**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Polynomial models in finance

Abstract

This thesis presents new flexible dynamic stochastic models for the evolution of market prices and new methods for the valuation of derivatives. These models and methods build on the recently characterized class of polynomial jump-diffusion processes for which the conditional moments are analytic. The first half of this thesis is concerned with modelling the fluctuations in the volatility of stock prices, and with the valuation of options on the stock. A new stochastic volatility model for which the squared volatility follows a Jacobi process is presented in the first chapter. The stock price volatility is allowed to continuously fluctuate between a lower and an upper bound, and option prices have closed-form series representations when their payoff functions depend on the stock price at finitely many dates. Truncating these series at some finite order entails accurate option price approximations. This method builds on the series expansion of the ratio between the log price density and an auxiliary density, with respect to an orthonormal basis of polynomials in a weighted Lebesgue space. When the payoff functions can be similarly expanded, the method is particularly efficient computationally. In the second chapter, more flexible choices of weighted spaces are studied in order to obtain new series representations for option prices with faster convergence rates. The option price approximation method can then be applied to various stochastic volatility models. The second half of this thesis is concerned with modelling the default times of firms, and with the pricing of credit risk securities. A new class of credit risk models in which the firm default probability is linear in the factors is presented in the third chapter. The prices of defaultable bonds and credit default swaps have explicit linear-rational expressions in the factors. A polynomial model with compact support and bounded default intensities is developed. This property is exploited to approximate credit derivatives prices by interpolating their payoff functions with polynomials. In the fourth chapter, the joint term structure of default probabilities is flexibly modelled using factor copulas. A generic static framework is developed in which the prices of high dimensional and complex credit securities can be efficiently and exactly computed. Dynamic credit risk models with significant default dependence can in turn be constructed by combining polynomial factor copulas and linear credit risk models.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (5)

Related concepts (18)

Price

A price is the (usually not negative) quantity of payment or compensation expected, required, or given by one party to another in return for goods or services. In some situations, the price of production has a different name. If the product is a "good" in the commercial exchange, the payment for this product will likely be called its "price". However, if the product is "service", there will be other possible names for this product's name.

Binomial options pricing model

In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" (lattice based) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting. The binomial model was first proposed by William Sharpe in the 1978 edition of Investments (), and formalized by Cox, Ross and Rubinstein in 1979 and by Rendleman and Bartter in that same year.

Stochastic volatility

In statistics, stochastic volatility models are those in which the variance of a stochastic process is itself randomly distributed. They are used in the field of mathematical finance to evaluate derivative securities, such as options. The name derives from the models' treatment of the underlying security's volatility as a random process, governed by state variables such as the price level of the underlying security, the tendency of volatility to revert to some long-run mean value, and the variance of the volatility process itself, among others.

Options are some of the most traded financial instruments and computing their price is a central task in financial mathematics and in practice. Consequently, the development of numerical algorithms fo

,

We derive analytic series representations for European option prices in polynomial stochastic volatility models. This includes the Jacobi, Heston, Stein-Stein, and Hull-White models, for which we prov

This thesis studies the valuation and hedging of financial derivatives, which is fundamental for trading and risk-management operations in financial institutions. The three chapters in this thesis dea