Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Compressed sensing is a new trend in signal processing for efficient sampling and signal acquisition. The idea is that most real-world signals have a sparse representation in an appropriate basis and this can be exploited to capture the sparse signal by ta ...
This paper investigates the construction of determin- istic measurement matrices preserving the entropy of a random vector with a given probability distribution. In particular, it is shown that for a random vector with i.i.d. discrete components, this is a ...
Abstract—In this paper, the ‘Approximate Message Passing’ (AMP) algorithm, initially developed for compressed sensing of signals under i.i.d. Gaussian measurement matrices, has been extended to a multi-terminal setting (MAMP algorithm). It has been shown t ...
The entropy power inequality (EPI) yields lower bounds on the differential entropy of the sum of two independent real-valued random variables in terms of the individual entropies. Versions of the EPI for discrete random variables have been obtained for spe ...
Institute of Electrical and Electronics Engineers2014
In this paper, the 'Approximate Message Passing' (AMP) algorithm, initially developed for compressed sensing of signals under i.i.d. Gaussian measurement matrices, has been extended to a multi-terminal setting (MAMP algorithm). It has been shown that simil ...
A new iterative low complexity algorithm has been presented for computing the Walsh-Hadamard transform (WHT) of an N dimensional signal with a K-sparse WHT, where N is a power of two and K = O(N^α), scales sub- linearly in N for some 0 < α < 1. Assuming a ...