Quantum sensors and qubits are usually two-level systems (TLS), the quantum analogues of classical bits assuming binary values 0 or 1. They are useful to the extent to which superpositions of 0 and 1 persist despite a noisy environment. The standard prescr ...
Spin states in semiconductors provide exceptionally stable and noise-resistant environments for qubits, positioning them as optimal candidates for reliable quantum computing technologies. The proposal to use nuclear and electronic spins of donor atoms in s ...
Ordinary metals contain electron liquids within well-defined 'Fermi' surfaces at which the electrons behave as if they were non-interacting. In the absence of transitions to entirely new phases such as insulators or superconductors, interactions between el ...
Honeycomb and kagome lattices can host propagating excitations with non-trivial topology as defined by their evolution along closed paths in momentum space. Excitations on such lattices can also be momentum-independent, and the associated flat bands are of ...
Atomically precise hydrogen desorption lithography using scanning tunnelling microscopy (STM) has enabled the development of single-atom, quantum-electronic devices on a laboratory scale. Scaling up this technology to mass-produce these devices requires br ...
We report on the induction of magnetization in Rydberg systems by means of the inverse Faraday effect and propose the appearance of the effect in two such systems: Rydberg atoms proper and shallow dopants in semiconductors. Rydberg atoms are characterized ...
Advances in science, medicine and engineering rely on breakthroughs in imaging, particularly for obtaining multiscale, three-dimensional information from functional systems such as integrated circuits or mammalian brains. Achieving this goal often requires ...
Dynamical perturbations modify the states of classical systems in surprising ways and give rise to important applications in science and technology. For example, Floquet engineering exploits the possibility of band formation in the frequency domain when a ...
In this work, we show the feasibility of extreme ultraviolet (EUV) patterning on an HF-treated silicon (100) surface in the absence of a photoresist. EUV lithography is the leading lithography technique in semiconductor manufacturing due to its high resolu ...
The progress of miniaturization in integrated electronics has led to atomic and nanometer-sized dopant devices in silicon. Such structures can be fabricated routinely by hydrogen resist lithography, using various dopants such as P and As. However, the abil ...