Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We study generalization properties of distributed algorithms in the setting of nonparametric regression over a reproducing kernel Hilbert space (RKHS). We first investigate distributed stochastic gradient methods (SGM), with mini-batches and multi-passes o ...
Sparse recovery from undersampled random quan- tization measurements is a recent active research topic. Previous work asserts that stable recovery can be guaranteed via the basis pursuit dequantizer (BPDQ) if the measurements number is large enough, consid ...
In this paper, we study regression problems over a separable Hilbert space with the square loss, covering non-parametric regression over a reproducing kernel Hilbert space. We investigate a class of spectral/regularized algorithms, including ridge regressi ...
We study the least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space as a special case. We rst investigate regularized algorithms adapted to a projection operator on a closed subspace ...
We study generalization properties of distributed algorithms in the setting of nonparametric regression over a reproducing kernel Hilbert space (RKHS). We first investigate distributed stochastic gradient methods (SGM), with mini-batches and multi-passes o ...
Machine learning promises to accelerate materials discovery by allowing computational efficient property predictions from a small number of reference calculations. As a result, the literature spent a considerable effort in designing representations that ca ...
We study generalization properties of distributed algorithms in the setting of nonparametric regression over a reproducing kernel Hilbert space (RKHS). We investigate distributed stochastic gradient methods (SGM), with mini-batches and multi-passes over th ...
Machine learning promises to accelerate materials discovery by allowing computational efficient property predictions from a small number of reference calculations. As a result, the literature has spent a considerable effort in designing representations tha ...
We investigate regularized algorithms combining with projection for least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space. We prove convergence results with respect to variants of n ...