**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Emelie Kerstin Arvidsson

This person is no longer with EPFL

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related research domains (7)

Related publications (3)

Kodaira vanishing theorem

In mathematics, the Kodaira vanishing theorem is a basic result of complex manifold theory and complex algebraic geometry, describing general conditions under which sheaf cohomology groups with indices q > 0 are automatically zero. The implications for the group with index q = 0 is usually that its dimension — the number of independent global sections — coincides with a holomorphic Euler characteristic that can be computed using the Hirzebruch–Riemann–Roch theorem.

Perfect field

In algebra, a field k is perfect if any one of the following equivalent conditions holds: Every irreducible polynomial over k has distinct roots. Every irreducible polynomial over k is separable. Every finite extension of k is separable. Every algebraic extension of k is separable. Either k has characteristic 0, or, when k has characteristic p > 0, every element of k is a pth power. Either k has characteristic 0, or, when k has characteristic p > 0, the Frobenius endomorphism x ↦ x^p is an automorphism of k.

Divisor (algebraic geometry)

In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumford). Both are derived from the notion of divisibility in the integers and algebraic number fields. Globally, every codimension-1 subvariety of projective space is defined by the vanishing of one homogeneous polynomial; by contrast, a codimension-r subvariety need not be definable by only r equations when r is greater than 1.

The topic of this thesis is vanishing theorems in positive characteristic. In particular, we use "the covering trick of Ekedahl" to investigate the vanishing of $H^1(X, \mathcal{O}_X(-D))$ for a big and nef Weil divisor $D$ on a normal projective variety w ...

We investigate the vanishing of H1(X,OX(−D)) for a big and nef Q-Cartier Z-divisor D on a log del Pezzo pair (X,Δ) over a perfect field of positive characteristic p. ...

2021Emelie Kerstin Arvidsson, Fabio Bernasconi

We prove the Kawamata-Viehweg vanishing theorem for surfaces of del Pezzo type over perfect fields of positive characteristic p > 5. As a consequence, we show that klt threefold singularities over a perfect base field of characteristic p > 5 are rational. ...