Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In a seminal work, Micciancio and Voulgaris (SIAM J Comput 42(3):1364-1391, 2013) described a deterministic single-exponential time algorithm for the closest vector problem (CVP) on lattices. It is based on the computation of the Voronoi cell of the given ...
We introduce a novel intrinsic volume concept in tropical geometry. This is achieved by developing the foundations of a tropical analog of lattice point counting in polytopes. We exhibit the basic properties and compare it to existing measures. Our exposit ...
The isodiametric inequality states that the Euclidean ball maximizes the volume among all convex bodies of a given diameter. We are motivated by a conjecture of Makai Jr. on the reverse question: Every convex body has a linear image whose isodiametric quot ...
Cao and Yuan obtained a Blichfeldt-type result for the vertex set of the edge-to-edge tiling of the plane by regular hexagons. Observing that the vertex set of every Archimedean tiling is the union of translates of a fixed lattice, we take a more general v ...
In a seminal work, Micciancio & Voulgaris (2010) described a deterministic single-exponential time algorithm for the Closest Vector Problem (CVP) on lattices. It is based on the computation of the Voronoi cell of the given lattice and thus may need exponen ...
We explore upper bounds on the covering radius of non-hollow lattice polytopes. In particular, we conjecture a general upper bound of d/2 in dimension d, achieved by the "standard terminal simplices" and direct sums of them. We prove this conjecture up to ...
For a set X of integer points in a polyhedron, the smallest number of facets of any polyhedron whose set of integer points coincides with X is called the relaxation complexity rc(X). This parameter was introduced by Kaibel & Weltge (2015) and captures the ...
We study the Lonely Runner Conjecture, conceived by Jörg M. Wills in the 1960's: Given positive integers n_1, n_2, ... , n_k, there exists a positive real number t such that for all 1 \le j \le k the distance of t n_j to the nearest integer is at least 1 / ...