**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Tropical Ehrhart Theory and Tropical Volume

Abstract

We introduce a novel intrinsic volume concept in tropical geometry. This is achieved by developing the foundations of a tropical analog of lattice point counting in polytopes. We exhibit the basic properties and compare it to existing measures. Our exposition is complemented by a brief study of arising complexity questions.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (24)

Related publications (32)

Ontological neighbourhood

Polytope

In elementary geometry, a polytope is a geometric object with flat sides (faces). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a (k + 1)-polytope consist of k-polytopes that may have (k – 1)-polytopes in common.

Regular polytope

In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or j-faces (for all 0 ≤ j ≤ n, where n is the dimension of the polytope) — cells, faces and so on — are also transitive on the symmetries of the polytope, and are regular polytopes of dimension ≤ n. Regular polytopes are the generalized analog in any number of dimensions of regular polygons (for example, the square or the regular pentagon) and regular polyhedra (for example, the cube).

4-polytope

In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853. The two-dimensional analogue of a 4-polytope is a polygon, and the three-dimensional analogue is a polyhedron.

Yuri Faenza, Manuel Francesco Aprile

Deterministic protocols are well-known tools to obtain extended formulations, with many applications to polytopes arising in combinatorial optimization. Although constructive, those tools are not output-efficient, since the time needed to produce the exten ...

We present the design of a motion planning algorithm that ensures safety for an autonomous vehicle. In particular, we consider a multimodal distribution over uncertainties; for example, the uncertain predictions of future trajectories of surrounding vehicl ...

2022An integer program (IP) is a problem of the form $\min \{f(x) : \, Ax = b, \ l \leq x \leq u, \ x \in \Z^n\}$, where $A \in \Z^{m \times n}$, $b \in \Z^m$, $l,u \in \Z^n$, and $f: \Z^n \rightarrow \Z$ is a separable convex objective function.
The problem o ...