We present a new method for generating realistic and view-consistent images with fine geometry from 2D image collections. Our method proposes a hybrid explicitimplicit representation called OrthoPlanes, which encodes fine-grained 3D information in feature ...
We present 3DHumanGAN, a 3D-aware generative adversarial network that synthesizes photo-like images of fullbody humans with consistent appearances under different view-angles and body-poses. To tackle the representational and computational challenges in sy ...
Human visual system relies on both monocular focusness cues and binocular stereo cues to gain effective 3D perception. Correspondingly, depth from focus/defocus (DfF/DfD) and stereo matching are two most studied passive depth sensing schemes, which are tra ...
A powerful simulator highly decreases the need for real-world tests when training and evaluating autonomous vehicles. Data-driven simulators flourished with the recent advancement of conditional Generative Adversarial Networks (cGANs), providing high-fidel ...
Our goal is to capture the pose of neuroscience model organisms, without using any manual supervision, to be able to study how neural circuits orchestrate behaviour. Human pose estimation attains remarkable accuracy when trained on real or simulated datase ...
2020
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.