Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We revisit the rapid stabilization of the heat equation on the 1-dimensional torus using the backstepping method with a Fredholm transformation. We prove that, under some assumption on the control operator, two scalar controls are necessary and sufficient ...
We prove the semi-global controllability and stabilization of the (1+1)−dimensional wave maps equation with spatial domain 𝕊1 and target Sk. First we show that damping stabilizes the system when the energy is strictly below the threshold 2π, where ha ...
We study the rapid stabilization of the heat equation on the 1-dimensional torus using the backstepping method with a Fredholm transformation. This classical framework allows us to present the backstepping method with Fredholm transformations for the Lapla ...
Continuing the investigations started in the recent work [12] on semi-global controllability and stabilization of the (1+1)-dimensional wave maps equation with spatial domain S1 and target Sk , where semi-global refers to the 2π-energy bound, we prov ...
In this article we study the so-called water tank system. In this system, the behavior of water contained in a 1-D tank is modelled by Saint-Venant equations, with a scalar distributed control. It is well-known that the linearized systems around uniform st ...
The controllability of the linearized KdV equation with right Neumann control is studied in the pioneering work of Rosier [25]. However, the proof is by contradiction arguments and the value of the observability constant remains unknown, though rich mathem ...
We construct explicit time-varying feedback laws leading to the global (null) stabilization in small time of the viscous Burgers equation with three scalar controls. Our feedback laws use first the quadratic transport term to achieve the small-time global ...
The null controllability of the heat equation is known for decades [21, 25, 34]. The finite time stabilizability of the one dimensional heat equation was proved by Coron-Nguyên [15], while the same question for high dimensional spaces remained widely open. ...
We provide explicit time-varying feedback laws that locally stabilize the two dimensional internal controlled incompressible Navier-Stokes equations in arbitrarily small time. We also obtain quantitative rapid stabilization via stationary feedback laws, as ...
We investigate the stability and stabilization of the cubic focusing Klein-Gordon equation around static solutions on the closed ball in R3. First we show that the system is linearly unstable near the static solution u≡1 for any dissipat ...