Alejandro Rivera
We develop techniques to study the phase transition for planar Gaussian percolation models that are not (necessarily) positively correlated. These models lack the property of positive associations (also known as the 'FKG inequality'), and hence many classical arguments in percolation theory do not apply. More precisely, we consider a smooth stationary centred planar Gaussian field f and, given a level l epsilon R, we study the connectivity properties of the excursion set {f >= -l}. We prove the existence of a phase transition at the critical level l(crit) = 0 under only symmetry and (very mild) correlation decay assumptions, which are satisfied by the random plane wave for instance. As a consequence, all nonzero level lines are bounded almost surely, although our result does not settle the boundedness of zero level lines ('no percolation at criticality').To show our main result: (i) we prove a general sharp threshold criterion, inspired by works of Chatterjee, that states that 'sharp thresholds are equivalent to the delocalisation of the threshold location'; (ii) we prove threshold delocalisation for crossing events at large scales-at this step we obtain a sharp threshold result but without being able to locate the threshold-and (iii) to identify the threshold, we adapt Tassion's RSW theory replacing the FKG inequality by a sprinkling procedure. Although some arguments are specific to the Gaussian setting, many steps are very general and we hope that our techniques may be adapted to analyse other models without FKG.
Cleveland2023