Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course provides an overview and introduces modern methods for reinforcement learning (RL.) The course starts with the fundamentals of RL, such as Q-learning, and delves into commonly used approac
Veuillez noter qu'il ne s'agit pas d'une liste complète des publications de cette personne. Elle inclut uniquement les travaux sémantiquement pertinents. Pour une liste complète, veuillez consulter Infoscience.
Autoregressive (AR) Large Language Models (LLMs) have demonstrated significant success across numerous tasks. However, the AR modeling paradigm presents certain limitations; for instance, contemporary autoregressive LLMs are trained to generate one token a ...
State-of-the-art results in large language models (LLMs) often rely on scale, which becomes computationally expensive. This has sparked a research agenda to reduce these models' parameter counts and computational costs without significantly impacting their ...
Reinforcement learning (RL) is inherently rife with non-stationarity since the states and rewards the agent observes during training depend on its changing policy. Therefore, networks in deep RL must be capable of adapting to new observations and fitting n ...