Glial cell line-derived neurotrophic factor (GDNF), a new neurotrophic factor for motoneurones
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Unilateral or bilateral corticospinal tract injury in the medullary pyramids in adult rats causes anatomical and physiological changes in proprioceptive neurons projecting to the cervical spinal cord accompanied by hyperreflexia and abnormal behavioural mo ...
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. We have recently shown that human mesenchymal stem cells (hMSCs) modified to release glial cell li ...
Down syndrome (DS) or trisomy 21 is the most frequent genetic cause of intellectual disability in children and adults. Although numerous studies have shown that cognitive impairment possibly arises from dysfunction of the hippocampal circuit, there has bee ...
Huntington's disease is an autosomal dominantly inherited neurodegenerative disorder characterized by progressive motor dysfunction, dementia, psychiatric symptoms, and weight loss, eventually leading to death. Postmortem analysis of the brains of HD patie ...
Gene expression changes are a hallmark of the neuropathology of Huntington's disease (HD), but the exact molecular mechanisms of this effect remain uncertain. Here, we report that in vitro models of disease comprised of primary striatal neurons expressing ...
BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by rapid loss of muscle control and eventual paralysis due to the death of large motor neurons in the brain and spinal cord. Growth factors such ...
Developmental cell death plays an important role in the construction of functional neural circuits. In vertebrates, the canonical view proposes a selection of the surviving neurons through stochastic competition for target-derived neurotrophic signals, imp ...
Down syndrome (DS) is caused by the triplication of human chromosome 21, and it is the most frequent genetic cause of cognitive disabilities. Although numerous studies have shown that cognitive impairment possibly arises from dysfunction of the hippocampal ...
Native functional brain circuits show different numbers of synapses (synaptic densities) in the cerebral cortex. Until now, different synaptic densities could not be studied in vitro using current cell culture methods for primary neurons. Herein, we presen ...
After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different ne ...