HeuristicA heuristic (hjʊˈrɪstɪk; ), or heuristic technique, is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, short-term goal or approximation. Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of finding a satisfactory solution. Heuristics can be mental shortcuts that ease the cognitive load of making a decision.
Heuristic (psychology)Heuristics is the process by which humans use mental short cuts to arrive at decisions. Heuristics are simple strategies that humans, animals, organizations, and even machines use to quickly form judgments, make decisions, and find solutions to complex problems. Often this involves focusing on the most relevant aspects of a problem or situation to formulate a solution. While heuristic processes are used to find the answers and solutions that are most likely to work or be correct, they are not always right or the most accurate.
Final topologyIn general topology and related areas of mathematics, the final topology (or coinduced, strong, colimit, or inductive topology) on a set with respect to a family of functions from topological spaces into is the finest topology on that makes all those functions continuous. The quotient topology on a quotient space is a final topology, with respect to a single surjective function, namely the quotient map. The disjoint union topology is the final topology with respect to the inclusion maps.
Coherent topologyIn topology, a coherent topology is a topology that is uniquely determined by a family of subspaces. Loosely speaking, a topological space is coherent with a family of subspaces if it is a topological union of those subspaces. It is also sometimes called the weak topology generated by the family of subspaces, a notion that is quite different from the notion of a weak topology generated by a set of maps. Let be a topological space and let be a family of subsets of each having the subspace topology.
Social heuristicsSocial heuristics are simple decision making strategies that guide people's behavior and decisions in the social environment when time, information, or cognitive resources are scarce. Social environments tend to be characterised by complexity and uncertainty, and in order to simplify the decision-making process, people may use heuristics, which are decision making strategies that involve ignoring some information or relying on simple rules of thumb.
General topologyIn mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points.
Heuristic (computer science)In mathematical optimization and computer science, heuristic (from Greek εὑρίσκω "I find, discover") is a technique designed for problem solving more quickly when classic methods are too slow for finding an exact or approximate solution, or when classic methods fail to find any exact solution. This is achieved by trading optimality, completeness, accuracy, or precision for speed. In a way, it can be considered a shortcut.
Quotient space (topology)In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map (the function that maps points to their equivalence classes). In other words, a subset of a quotient space is open if and only if its under the canonical projection map is open in the original topological space.
Disjoint union (topology)In general topology and related areas of mathematics, the disjoint union (also called the direct sum, free union, free sum, topological sum, or coproduct) of a family of topological spaces is a space formed by equipping the disjoint union of the underlying sets with a natural topology called the disjoint union topology. Roughly speaking, in the disjoint union the given spaces are considered as part of a single new space where each looks as it would alone and they are isolated from each other.
Initial topologyIn general topology and related areas of mathematics, the initial topology (or induced topology or weak topology or limit topology or projective topology) on a set with respect to a family of functions on is the coarsest topology on that makes those functions continuous. The subspace topology and product topology constructions are both special cases of initial topologies. Indeed, the initial topology construction can be viewed as a generalization of these.