In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map (the function that maps points to their equivalence classes). In other words, a subset of a quotient space is open if and only if its under the canonical projection map is open in the original topological space.
Intuitively speaking, the points of each equivalence class are or "glued together" for forming a new topological space. For example, identifying the points of a sphere that belong to the same diameter produces the projective plane as a quotient space.
Let be a topological space, and let be an equivalence relation on The quotient set is the set of equivalence classes of elements of The equivalence class of is denoted
The construction of defines a canonical surjection As discussed below, is a quotient mapping, commonly called the canonical quotient map, or canonical projection map, associated to
The quotient space under is the set equipped with the quotient topology, whose open sets are those subsets whose is open. In other words, is open in the quotient topology on if and only if is open in Similarly, a subset is closed if and only if is closed in
The quotient topology is the final topology on the quotient set, with respect to the map
A map is a quotient map (sometimes called an identification map) if it is surjective and is equipped with the final topology induced by The latter condition admits two more-elementary phrasings: a subset is open (closed) if and only if is open (resp. closed). Every quotient map is continuous but not every continuous map is a quotient map.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
Concepts de base de l'analyse fonctionnelle linéaire: opérateurs bornés, opérateurs compacts, théorie spectrale pour les opérateurs symétriques et compacts, le théorème de Hahn-Banach, les théorèmes d
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
DISPLAYTITLE:T1 space In topology and related branches of mathematics, a T1 space is a topological space in which, for every pair of distinct points, each has a neighborhood not containing the other point. An R0 space is one in which this holds for every pair of topologically distinguishable points. The properties T1 and R0 are examples of separation axioms. Let X be a topological space and let x and y be points in X. We say that x and y are if each lies in a neighbourhood that does not contain the other point.
Two mathematical objects a and b are called equal up to an equivalence relation R if a and b are related by R, that is, if aRb holds, that is, if the equivalence classes of a and b with respect to R are equal. This figure of speech is mostly used in connection with expressions derived from equality, such as uniqueness or count. For example, x is unique up to R means that all objects x under consideration are in the same equivalence class with respect to the relation R.
Two channels are said to be equivalent if they are degraded from each other. The space of equivalent channels with input alphabet X and output alphabet Y can be naturally endowed with the quotient of the Euclidean topology by the equivalence relation. We s ...
Symmetry and topology are fundamental properties of nature. Mathematics provides us with a general framework to understand these concepts. On one side, symmetry describes the invariance properties of an object for specific transformations. On the other sid ...
EPFL2020
The structure in cortical microcircuits deviates from what would be expected in a purely random network, which has been seen as evidence of clustering. To address this issue, we sought to reproduce the nonrandom features of cortical circuits by considering ...