Publication

Photodynamics and surface characterization of TiO2 and Fe2O3 photocatalysts immobilized on modified polyethylene films

Abstract

Polyethylene block-copolymer films containing negative anhydride groups were used to immobilize TiO2, Fe2O3, and Fe3+ photocatalysts. The kinetics of the mineralization of azo-dye Orange II and chlorophenols on copolymer−TiO2, copolymer−Fe2O3, and copolymer−Fe3+ have been tested under optimized experimental conditions. In the case of copolymer−TiO2, the degradation kinetics for the model organic compounds were about the same as those observed with TiO2 suspensions containing about a 27 times higher amount of TiO2 per unit volume. The surface of the derivatized copolymer semiconductor catalysts was studied by infrared attenuated total reflection spectroscopy. The spectroscopic data provided evidence for a TiO2 interaction with the negatively charged conjugated carboxylic groups of the copolymer, leading to an asymmetric-stretching band of −COO−Ti4+ at the position expected for metal carboxylates. In the case of Fe2O3 and Fe3+, the asymmetric-stretching carboxylate bands are ascribed to the carboxylate bands of −COO−Fe2O3 and −COOO−Fe3+. Evidence is presented by X-ray photoelectron spectroscopy for the existence of two oxidation states of Ti and Fe after the photocatalytic degradation of Orange II. This observation is consistent with light-induced interfacial charge transfer (redox processes) taking place at the metal−oxide copolymer surface. The nature of the latter processes is presented in detail during this study.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Ethylene-vinyl acetate
Ethylene-vinyl acetate (EVA), also known as poly(ethylene-vinyl acetate) (PEVA), is a copolymer of ethylene and vinyl acetate. The weight percent of vinyl acetate usually varies from 10 to 40%, with the remainder being ethylene. There are three different types of EVA copolymer, which differ in the vinyl acetate (VA) content and the way the materials are used. The EVA copolymer which is based on a low proportion of VA (approximately up to 4%) may be referred to as vinyl acetate modified polyethylene.
Polyethylene terephthalate
Polyethylene terephthalate (or poly(ethylene terephthalate), PET, PETE, or the obsolete PETP or PET-P), is the most common thermoplastic polymer resin of the polyester family and is used in fibres for clothing, containers for liquids and foods, and thermoforming for manufacturing, and in combination with glass fibre for engineering resins. In 2016, annual production of PET was 56 million tons. The biggest application is in fibres (in excess of 60%), with bottle production accounting for about 30% of global demand.
Polyethylene
Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bottles, etc.). , over 100 million tonnes of polyethylene resins are being produced annually, accounting for 34% of the total plastics market. Many kinds of polyethylene are known, with most having the chemical formula (C2H4)n. PE is usually a mixture of similar polymers of ethylene, with various values of n.
Show more
Related publications (34)

Incorporation of Lignin in Bio-Based Resins for Potential Application in Fiber-Polymer Composites

Mário Alexandre De Jesus Garrido, Mateus De Assunção Hofmann

Bio-based resins, obtained from renewable raw materials, are a more sustainable alternative to oil-based resins for fiber-reinforced polymer (FRP) composites. The incorporation of lignin in those resins has the potential to enhance their performance. This ...
MDPI2023

Stabilizing Unusual Oxidation States of Lanthanides in Molecular Complexes: Synthesis, Properties, and Reactivity

Aurélien René Willauer

The chemistry of divalent lanthanides has generated increasing interest in the past years due to their redox properties and unique reaction pathways. Notably, molecular complexes of low-valent lanthanides have been shown to be suitable one-electron reducta ...
EPFL2022

Nitriles as main products from the oxidation of primary amines by ferrate (VI): Kinetics, mechanisms and toxicological implications for nitrogenous disinfection byproduct control

Woongbae Lee, Yun Ho Lee, Jaedon Shin

Ferrate (Fe(VI)), a promising water treatment oxidant, can be used for micropollutant abatement or disinfection byproduct mitigation. However, knowledge gaps remain concerning the interaction between Fe(VI) and dissolved organic matter structures, notably ...
PERGAMON-ELSEVIER SCIENCE LTD2022
Show more
Related MOOCs (1)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.