A finite element method for 3D hydrostatic water flows
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The finite element method is a well-established method for the numerical solution of partial differential equations (PDEs), both linear and nonlinear. However, the repeated re -assemblage of finite element matrices for nonlinear PDEs is frequently pointed ...
The FEBEX test was a large-scale demonstration project for the deep geological disposal concept of nuclear waste involving bentonite seals that lasted 18 years. One of the objectives of the test was to evaluate the capabilities of numerical methods to prov ...
Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and gravitational waves among others.Their descriptions as partial differential equations in electromagnetics, acoustics, and fluid dynamics are ubiquitous in science and engineeri ...
The objective of this paper is to investigate a new numerical method for the approximation of the self-diffusion matrix of a tagged particle process defined on a grid. While standard numerical methods make use of long-time averages of empirical means of de ...
The matrix formation associated to high-order discretizations is known to be numerically demanding. Based on the existing procedure of interpolation and lookup, we design a multiscale assembly procedure to reduce the exorbitant assembly time in the context ...
Soft adhesive pads attached to a rigid substrate show stick-slip behavior upon loading: they detach and reattach in a different location. This is accompanied by the lifting of the adhesive, the mechanical wave carrying this motion being known as a Schallam ...
For two-dimensional (2D) time fractional diffusion equations, we construct a numerical method based on a local discontinuous Galerkin (LDG) method in space and a finite difference scheme in time. We investigate the numerical stability and convergence of th ...
We present a numerical method for the solution of nonlinear geomechanical problems involving localized deformation along shear bands and fractures. We leverage the boundary element method to solve for the quasi-static elastic deformation of the medium whil ...
We design and analyse the performance of a multilevel ensemble Kalman filter method (MLEnKF) for filtering settings where the underlying state-space model is an infinite-dimensional spatio-temporal process. We consider underlying models that needs to be si ...
Finite volume methods are proposed for computing approximate pathwise entropy/kinetic solutions to conservation laws with flux functions driven by low-regularity paths. For a convex flux, it is demonstrated that driving path oscillations may lead to "cance ...