**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Efficient algorithms for wave problems

Abstract

Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and gravitational waves among others.Their descriptions as partial differential equations in electromagnetics, acoustics, and fluid dynamics are ubiquitous in science and engineering. Having numerical methods to solve these problems efficiently is therefore of great importance and value to domains such as aerospace engineering, geophysics, and civil engineering.Wave problems are characterized by the finite speeds at which waves propagate and present a series of challenges for the numerical methods aimed at solving them. This dissertation is concerned with the development and analysis of numerical algorithms for solving wave problems efficiently using a computer. It contains two parts:The first part is concerned with sparse linear systems which stem from discretizations of such problems. An approximate direct solver is developed, which can be computed and applied in quasilinear complexity. As such, it can also be used as a preconditioner to accelerate the computation of solutions using iterative methods. This direct solver is based on structured Gaussian elimination, using a nested dissection reordering and the compression of dense, intermediate matrices using rank structured matrix formats. We motivate the use of these formats and demonstrate their usefulness in our algorithm. The viability of the method is then verified using a variety of numerical experiments. These confirm the quasilinear complexity and the applicability of the method.The second part focuses on the solution of the shallow water equations using the discontinuous Galerkin method. These equations are used to model tsunamis, storm surges, and weather phenomena.We aim to model large-scale tsunami events, as would be required for the development of an early-warning system. This necessitates the development of a well-balanced numerical scheme, which is efficient, flexible, and robust. We analyze the well-balanced property in the context of discontinuous Galerkin methods and how it can be obtained. Another problem that arises with the shallow water equations is the presence of dry areas. We introduce methods to handle these in a well-balanced, and physically consistent manner. The resulting method is validated using tests in one dimension, as well as simulations on the surface of the Earth. The latter are compared to real-world data obtained from buoys and satellites, which demonstrate the applicability and accuracy of our method.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (48)

Related MOOCs (32)

Related publications (396)

Numerical linear algebra

Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.

Numerical analysis

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.

Numerical stability

In the mathematical subfield of numerical analysis, numerical stability is a generally desirable property of numerical algorithms. The precise definition of stability depends on the context. One is numerical linear algebra and the other is algorithms for solving ordinary and partial differential equations by discrete approximation. In numerical linear algebra, the principal concern is instabilities caused by proximity to singularities of various kinds, such as very small or nearly colliding eigenvalues.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Jean-Philippe Thiran, Erick Jorge Canales Rodriguez, Marco Pizzolato, Muhamed Barakovic, Tim Bjørn Dyrby

Purpose: This study aims to evaluate two distinct approaches for fiber radius estimation using diffusion-relaxation MRI data acquired in biomimetic microfiber phantoms that mimic hollow axons. The methods considered are the spherical mean power-law approac ...

Stefano Alberti, Jean-Philippe Hogge, Joaquim Loizu Cisquella, Jérémy Genoud, Francesco Romano

This paper presents the new 2D electrostatic particle-in-cell code FENNECS de- veloped to study the formation of magnetized non-neutral plasmas in geometries with azimuthal symmetry. This code has been developed in the domain of gy- rotron electron gun des ...

2024Annalisa Buffa, Espen Sande, Yannis Dirk Voet

Mass lumping techniques are commonly employed in explicit time integration schemes for problems in structural dynamics and both avoid solving costly linear systems with the consistent mass matrix and increase the critical time step. In isogeometric analysi ...

2024