Generalized connection graph method for synchronization in asymmetrical networks
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the localization game on a graph, the goal is to find a fixed but unknown target node v* with the least number of distance queries possible. In the j-th step of the game, the player queries a single node v_j and receives, as an answer to their query, th ...
The emerging field of graph signal processing (GSP) allows one to transpose classical signal processing operations (e.g., filtering) to signals on graphs. The GSP framework is generally built upon the graph Laplacian, which plays a crucial role in studying ...
Recent years have witnessed a rise in real-world data captured with rich structural information that can be better depicted by multi-relational or heterogeneous graphs.However, research on relational representation learning has so far mostly focused on the ...
Graphs offer a simple yet meaningful representation of relationships between data. Thisrepresentation is often used in machine learning algorithms in order to incorporate structuralor geometric information about data. However, it can also be used in an inv ...
Decision trees have been widely used as classifiers in many machine learning applications thanks to their lightweight and interpretable decision process. This paper introduces Tree in Tree decision graph (TnT), a framework that extends the conventional dec ...
Curran Associates, Inc, (NIPS '21: Proceedings of the 35th International Conference on Neural Information Processing Systems)2021
With the advent of data science, the analysis of network or graph data has become a very timely research problem. A variety of recent works have been proposed to generalize neural networks to graphs, either from a spectral graph theory or a spatial perspec ...
The articles in this special section focus on graph signal processing. Generically, the networks that sustain our societies can be understood as complex systems formed by multiple nodes, where global network behavior arises from local interactions between ...
Recent years have witnessed a rise in real-world data captured with rich structural information that can be conveniently depicted by multi-relational graphs. While inference of continuous node features across a simple graph is rather under-studied by the c ...
In diffusion social learning over weakly-connected graphs, it has been shown recently that influential agents shape the beliefs of non-influential agents. This paper analyzes this mechanism more closely and addresses two main questions. First, the article ...
Classic measures of graph centrality capture distinct aspects of node importance, from the local (e.g., degree) to the global (e.g., closeness). Here we exploit the connection between diffusion and geometry to introduce a multiscale centrality measure. A n ...