**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Community-Aware Graph Signal Processing: Modularity Defines New Ways of Processing Graph Signals

Dimitri Nestor Alice Van De Ville, Thomas William Arthur Bolton, Raphaël Pierre Liégeois

2020

Journal paper

2020

Journal paper

Abstract

The emerging field of graph signal processing (GSP) allows one to transpose classical signal processing operations (e.g., filtering) to signals on graphs. The GSP framework is generally built upon the graph Laplacian, which plays a crucial role in studying graph properties and measuring graph signal smoothness. Here, instead, we propose the graph modularity matrix as the centerpiece of GSP to incorporate knowledge about graph community structure when processing signals on the graph but without the need for community detection. We study this approach in several generic settings, such as filtering, optimal sampling and reconstruction, surrogate data generation, and denoising. Feasibility is illustrated by a small-scale example and a transportation network data set as well as one application in human neuroimaging where community-aware GSP reveals relationships between behavior and brain features that are not shown by Laplacian-based GSP. This work demonstrates how concepts from network science can lead to new, meaningful operations on graph signals.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (17)

Related concepts (32)

Related publications (89)

Analyse I

Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond

Analyse I (partie 1) : Prélude, notions de base, les nombres réels

Concepts de base de l'analyse réelle et introduction aux nombres réels.

Analyse I (partie 2) : Introduction aux nombres complexes

Introduction aux nombres complexes

Graph database

A graph database (GDB) is a database that uses graph structures for semantic queries with nodes, edges, and properties to represent and store data. A key concept of the system is the graph (or edge or relationship). The graph relates the data items in the store to a collection of nodes and edges, the edges representing the relationships between the nodes. The relationships allow data in the store to be linked together directly and, in many cases, retrieved with one operation.

Graph theory

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points) which are connected by edges (also called links or lines). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.

Directed graph

In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. In formal terms, a directed graph is an ordered pair where V is a set whose elements are called vertices, nodes, or points; A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A), arrows, or directed lines.

Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...

Giovanni De Micheli, Alessandro Tempia Calvino, Gianluca Radi

Technology mapping transforms a technology-independent representation into a technology-dependent one given a library of cells. This process is performed by means of local replacements that are extracted by matching sections of the subject graph to library ...

2024We study an energy market composed of producers who compete to supply energy to different markets and want to maximize their profits. The energy market is modeled by a graph representing a constrained power network where nodes represent the markets and lin ...