Publication

Effects of dynamic environments on extracellular morphogen gradients

Mark Fleury
2007
EPFL thesis
Abstract

Tissue morphogenesis and remodeling is often orchestrated by cell-secreted proteins, referred to as morphogens that can trigger cellular responses in addition to modifying the local extracellular matrix (ECM). Of specific interest is the distribution of cell secreted proteins in the cell microenvironment and how this distribution can lead to varied responses. Morphogens often provide directional cues, and as such their specific distribution is critical to the signaling that they induce, in other words cells are sensitive to morphogen gradients and not just absolute amounts. Natural cellular environments in native tissue involve three dimensional ECM and are typically subjected to dynamic conditions such as interstitial flow (IF). Despite the importance of the extracellular environment in signaling, very little is known regarding the effects of mechanical stresses and subtle interstitial flows. This thesis examines the role of IF on morphogen gradients using mass transport models to elucidate mechanisms responsible for several specific biological phenomena including in vitro capillary formation and lymphatic metastasis of tumor cells. In vitro capillary formation had been shown in our lab to be separately enhanced by bound VEGF alone and slow IF alone, with the combination of these two conditions resulting in marked increase in organization. Using our computational model we were able to propose a novel mechanistic model to explain this synergy. Specifically showed how, through the combined effects of IF and matrix-bound growth factors, cells could create their own biased chemokine gradients without recourse to internal amplification methods. This process, which we have termed "autologous chemotaxis," drives directional signaling and migration in the direction of flow. This can occur even at very low Peclet numbers, when diffusion still dominates the overall transport, but convection changes the shape of the gradient, which is what a cell responds to. We then examined the effects of IF on tumor cell migration to explore a novel mechanism of lymphatic metastasis. Tumors often produce high amounts of proteoglycans creating a microenvironment is rich in morphogen binding sites, and tumors are also a source of interstitial flow due to their leaky vasculature. The lymphatic system drains interstitial fluid, therefore IF is always directed toward lymphatic capillaries. The lymphatic system is also a common route of tumor metastasis, which is what lead us to study the role of IF mediated chemotaxis. A computational model of an in vitro tumor invasion assay was constructed that predicted tumor cell migration that was in very good agreement with the in vitro experimental results. This phenomenon was further studied by modeling an in vivo geometry and examining the factors controlling autologous gradient formation in a physiological setting. In conclusion, we have demonstrated the importance of convective mass transport at very low flow velocities in a biological context. While these velocities are low enough that the convective effects would typically be ignored, their subtle effects on pericellular mass transport can be translated into relevant and observable morphogenic responses.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Tumor microenvironment
The tumor microenvironment (TME) is the environment around a tumor, including the surrounding blood vessels, immune cells, fibroblasts, signaling molecules and the extracellular matrix (ECM). The tumor and the surrounding microenvironment are closely related and interact constantly. Tumors can influence the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth and evolution of cancerous cells.
Morphogen
A morphogen is a substance whose non-uniform distribution governs the pattern of tissue development in the process of morphogenesis or pattern formation, one of the core processes of developmental biology, establishing positions of the various specialized cell types within a tissue. More specifically, a morphogen is a signaling molecule that acts directly on cells to produce specific cellular responses depending on its local concentration.
Lymphatic system
The lymphatic system, or lymphoid system, is an organ system in vertebrates that is part of the immune system, and complementary to the circulatory system. It consists of a large network of lymphatic vessels, lymph nodes, lymphoid organs, lymphoid tissues and lymph. Lymph is a clear fluid carried by the lymphatic vessels back to the heart for re-circulation. (The Latin word for lymph, lympha, refers to the deity of fresh water, "Lympha"). Unlike the circulatory system that is a closed system, the lymphatic system is open.
Show more
Related publications (63)

Wireless soft microscale actuators and robotic devices to study mechanobiology

Raquel Filipa Penacho Parreira

Tissues morphogenesis and homeostasis involve the spatiotemporal regulation of mechanics at multiple scales. Characterization of mechanical properties of biological systems as well as investigating the effects of mechanical forces on biological function ar ...
EPFL2021

The Tumor Microenvironment as a Driving Force of Breast Cancer Stem Cell Plasticity

Albert Santamaria Martinez

Simple Summary Breast cancer stem cells are a subset of transformed cells that sustain tumor growth and can metastasize to secondary organs. Since metastasis accounts for most cancer deaths, it is of paramount importance to understand the cellular and mole ...
2020

Inhibitor-conjugated harmonic nanoparticles targeting fibroblast activation protein

Sandrine Gerber, Jérémy Vuilleumier, Raphaël Jovita De Matos

The recent progress in the engineering of nanosized inorganic materials presenting tailored physical properties and reactive surface for post-functionalization has opened promising avenues for the use of nanoparticles (NPs) in diagnosis and therapeutic int ...
2019
Show more
Related MOOCs (12)
Introduction à l'immunologie (part 1)
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
Show more