Publication

On the Message Complexity of Indulgent Consensus

Seth Gilbert, Rachid Guerraoui
Springer, 2007
Conference paper
Abstract

Many recommend planning for the worst and hoping for the best. In this paper we devise efficient indulgent consensus algorithms that can tolerate crash failures and arbitrarily long periods of asynchrony, and yet perform (asymptotically) optimally in well-behaved, synchronous executions with few failures. We present two such algorithms: In synchronous executions, the first has optimal message complexity, using only O(n) messages, but runs in superlinear time of O(n1+"). The second has a message complexity of O(n polylog(n)), but has an optimal running time, completing in O(f) rounds in synchronous executions with at most f failures. Both of these results improve significantly over the most message-efficient of previous indulgent consensus algorithms which have a message complexity of at least (n2) in well-behaved executions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts

Loading

Related publications

Loading