Charge transport mechanisms in organic and microcrystalline silicon field-effect transistors
Related publications (46)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
During the last two decades, the Institute of Microtechnology (IMT) has contributed in two important fields to future thin-film silicon solar cell processing and design: (1) In 1987, IMT introduced the so-called "very high frequency glow discharge (VHF-GD) ...
Microcrystalline silicon growth using very high frequency-glow discharge PECVD has been studied under conditions of high pressure and high VHF-power conditions. Hereby, the influence of the total gas flow and the silane concentration on the deposition rate ...
Hydrogenated microcrystalline silicon (μc-Si:H) layers about 500 nm thick were deposited in the same run on flat and rough substrates (rms = 60 nm) of various chemical nature. This study reveals that the spatial distribution of the microcrystalline/amorpho ...
The values obtained experimentally for the conductivity critical exponent in numerous percolation systems, in which the interparticle conduction is by tunneling, were found to be in the range of t0 and about t0 + ...
The qualitative description of the major microstructure characteristics of microcrystalline silicon is achieved through a three-dimensional discrete dynamical growth model. The model is based on three fundamental processes that determine surface morphology ...
This contribution describes the introduction of hydrogenated microcrystalline silicon (μc-Si:H) as novel absorber material for thin-film silicon solar cells. Work done at IMT Neuchâtel in connection with deposition of μc-Si:H layers by very high frequency ...
The determination of the crystalline volume fraction from the Raman spectra of microcrystalline silicon involves the knowledge of a material parameter called the Raman emission cross-section ratio y. This value is still debated in the literature. In the pr ...
A series of nip-type microcrystalline silicon (μc-Si:H) single-junction solar cells has been studied by electrical characterisation, by transmission electron microscopy (TEM) and by Raman spectroscopy using 514 and 633 nm excitation light and both top- and ...
The optical absorption coefficient of amorphous and microcrystalline silicon was determined in a spectral range 400-3100 nm and a temperature range 77-350 K. Transmittance measurement and Fourier transform photocurrent spectroscopy were used. The measured ...
The paper reports on the effects of a proton irradiation campaign on a series of thin-film silicon solar cells (single- and double-junction). The effect of subsequent thermal annealing on solar cells degraded by proton irradiation is investigated. A low-te ...