Homeostasis and Learning through Spike-Timing Dependent Plasticity
Related publications (53)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Maximization of information transmission by a spiking-neuron model predicts changes of synaptic connections that depend on timing of pre- and postsynaptic spikes and on the postsynaptic membrane potential. Under the assumption of Poisson firing statistics, ...
The precise times of occurrence of individual pre- and postsynaptic action potentials are known to play a key role in the modification of synaptic efficacy. Based on stimulation protocols of two synaptically connected neurons, we infer an algorithm that re ...
We propose a novel network model of spiking neurons, without preimposed topology and driven by STDP (Spike-Time-Dependent Plasticity), a temporal Hebbian unsupervised learning mode, based on biological observations of synaptic plasticity. The model is furt ...
We study analytically a model of long-term synaptic plasticity where synaptic changes are triggered by presynaptic spikes, postsynaptic spikes, and the time differences between pre- and postsynaptic spikes. We show that plasticity can lead to an intrinsic ...
L1 is a cell adhesion molecule implicated in the formation of neural circuits and synaptic plasticity. We have examined the sequence and time-frame in which modifications in the synaptic expression of L1 occur in the piriform cortex and hippocampus in the ...
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes by gradient ascent the likelihood of postsynaptic firing at one or severa ...
The impact was examined of exposing rats to two life experiences of a very different nature (stress and learning) on synaptic structures in hippocampal area CA3. Rats were subjected to either (i) chronic restraint stress for 21 days, and/or (ii) spatial tr ...
Many activity dependent learning rules have been proposed in order to model long-term potentiation (LTP). Our aim is to derive a spike time dependent learning rule from a probabilistic optimality criterion. Our approach allows us to obtain quantitative res ...
Throughout the neocortex, groups of neurons have been found to fire synchronously on the time scale of several milliseconds. This near coincident firing of neurons could coordinate the multifaceted information of different features of a stimulus. The mecha ...
A fascinating property of the brain is its ability to continuously evolve and adapt to a constantly changing environment. This ability to change over time, called plasticity, is mainly implemented at the level of the connections between neurons (i.e. the s ...