Optimal Hebbian Learning: a Probabilistic Point of View
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The anatomical connectivity among neurons has been experimentally found to be largely non-random across brain areas. This means that certain connectivity motifs occur at a higher frequency than would be expected by chance. Of particular interest, short-ter ...
Recent experimental data from the rodent cerebral cortex and olfactory bulb indicate that specific connectivity motifs are correlated with short-term dynamics of excitatory synaptic transmission. It was observed that neurons with short-term facilitating sy ...
How do animals learn to repeat behaviors that lead to the obtention of food or other “rewarding” objects? As a biologically plausible paradigm for learning in spiking neural networks, spike-timing dependent plasticity (STDP) has been shown to perform well ...
Neurons are arranged in networks in which they communicate between each other by the means of synapses. Synaptic transmission can undergo activity-dependent and short-lived changes in strength, known as short-term synaptic plasticity. Short-term plasticity ...
Our brain has the capacity to analyze a visual scene in a split second, to learn how to play an instrument, and to remember events, faces and concepts. Neurons underlie all of these diverse functions. Neurons, cells within the brain that generate and trans ...
Hebbian changes of excitatory synapses are driven by and further enhance correlations between pre- and postsynaptic activities. Hence, Hebbian plasticity forms a positive feedback loop that can lead to instability in simulated neural networks. To keep acti ...
We derive a plausible learning rule updating the synaptic efficacies for feedforward, feedback and lateral connections between observed and latent neurons. Operating in the context of a generative model for distributions of spike sequences, the learning me ...
How learning and memory is achieved in the brain is a central question in neuroscience. Key to today’s research into information storage in the brain is the concept of synaptic plasticity, a notion that has been heavily influenced by Hebb’s (1949) postulat ...
Spike Timing Dependent Plasticity (STDP) is a temporally asymmetric form of Hebbian learning induced by tight temporal correlations between the spikes of pre- and postsynaptic neurons. As with other forms of synaptic plasticity, it is widely believed that ...
Neocortical layer 5 (L5) pyramidal cells have at least two spike initiation zones: Na+ spikes are generated near the soma, and Ca2+ spikes at the apical dendritic tuft. These spikes interact with each other and serve as signals for synaptic plasticity. The ...