Gauge group (mathematics)A gauge group is a group of gauge symmetries of the Yang–Mills gauge theory of principal connections on a principal bundle. Given a principal bundle with a structure Lie group , a gauge group is defined to be a group of its vertical automorphisms. This group is isomorphic to the group of global sections of the associated group bundle whose typical fiber is a group which acts on itself by the adjoint representation. The unit element of is a constant unit-valued section of .
Anomaly (physics)In quantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's classical action to be a symmetry of any regularization of the full quantum theory. In classical physics, a classical anomaly is the failure of a symmetry to be restored in the limit in which the symmetry-breaking parameter goes to zero. Perhaps the first known anomaly was the dissipative anomaly in turbulence: time-reversibility remains broken (and energy dissipation rate finite) at the limit of vanishing viscosity.
Gravitational anomalyIn theoretical physics, a gravitational anomaly is an example of a gauge anomaly: it is an effect of quantum mechanics — usually a one-loop diagram—that invalidates the general covariance of a theory of general relativity combined with some other fields. The adjective "gravitational" is derived from the symmetry of a gravitational theory, namely from general covariance. A gravitational anomaly is generally synonymous with diffeomorphism anomaly, since general covariance is symmetry under coordinate reparametrization; i.
Track gaugeIn rail transport, track gauge (in American English, alternatively track gage) is the distance between the two rails of a railway track. All vehicles on a rail network must have wheelsets that are compatible with the track gauge. Since many different track gauges exist worldwide, gauge differences often present a barrier to wider operation on railway networks. The term derives from the metal bar, or gauge, that is used to ensure the distance between the rails is correct.
Gauge symmetry (mathematics)In mathematics, any Lagrangian system generally admits gauge symmetries, though it may happen that they are trivial. In theoretical physics, the notion of gauge symmetries depending on parameter functions is a cornerstone of contemporary field theory. A gauge symmetry of a Lagrangian is defined as a differential operator on some vector bundle taking its values in the linear space of (variational or exact) symmetries of . Therefore, a gauge symmetry of depends on sections of and their partial derivatives.
Pre-abelian categoryIn mathematics, specifically in , a pre-abelian category is an that has all and . Spelled out in more detail, this means that a category C is pre-abelian if: C is , that is over the of abelian groups (equivalently, all hom-sets in C are abelian groups and composition of morphisms is bilinear); C has all finite (equivalently, all finite coproducts); note that because C is also preadditive, finite products are the same as finite coproducts, making them biproducts; given any morphism f: A → B in C, the equaliser of f and the zero morphism from A to B exists (this is by definition the kernel of f), as does the coequaliser (this is by definition the cokernel of f).
Ward–Takahashi identityIn quantum field theory, a Ward–Takahashi identity is an identity between correlation functions that follows from the global or gauge symmetries of the theory, and which remains valid after renormalization. The Ward–Takahashi identity of quantum electrodynamics (QED) was originally used by John Clive Ward and Yasushi Takahashi to relate the wave function renormalization of the electron to its vertex renormalization factor, guaranteeing the cancellation of the ultraviolet divergence to all orders of perturbation theory.
Physics applications of asymptotically safe gravityThe asymptotic safety approach to quantum gravity provides a nonperturbative notion of renormalization in order to find a consistent and predictive quantum field theory of the gravitational interaction and spacetime geometry. It is based upon a nontrivial fixed point of the corresponding renormalization group (RG) flow such that the running coupling constants approach this fixed point in the ultraviolet (UV) limit. This suffices to avoid divergences in physical observables.
Test particleIn physical theories, a test particle, or test charge, is an idealized model of an object whose physical properties (usually mass, charge, or size) are assumed to be negligible except for the property being studied, which is considered to be insufficient to alter the behavior of the rest of the system. The concept of a test particle often simplifies problems, and can provide a good approximation for physical phenomena. In addition to its uses in the simplification of the dynamics of a system in particular limits, it is also used as a diagnostic in computer simulations of physical processes.