Secret sharingSecret sharing (also called secret splitting) refers to methods for distributing a secret among a group, in such a way that no individual holds any intelligible information about the secret, but when a sufficient number of individuals combine their 'shares', the secret may be reconstructed. Whereas insecure secret sharing allows an attacker to gain more information with each share, secure secret sharing is 'all or nothing' (where 'all' means the necessary number of shares).
Cryptographic nonceIn cryptography, a nonce is an arbitrary number that can be used just once in a cryptographic communication. It is often a random or pseudo-random number issued in an authentication protocol to ensure that old communications cannot be reused in replay attacks. They can also be useful as initialization vectors and in cryptographic hash functions. A nonce is an arbitrary number used only once in a cryptographic communication, in the spirit of a nonce word. They are often random or pseudo-random numbers.
Elliptic-curve cryptographyElliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security. Elliptic curves are applicable for key agreement, digital signatures, pseudo-random generators and other tasks. Indirectly, they can be used for encryption by combining the key agreement with a symmetric encryption scheme.
Related-key attackIn cryptography, a related-key attack is any form of cryptanalysis where the attacker can observe the operation of a cipher under several different keys whose values are initially unknown, but where some mathematical relationship connecting the keys is known to the attacker. For example, the attacker might know that the last 80 bits of the keys are always the same, even though they don't know, at first, what the bits are.
Key managementKey management refers to management of cryptographic keys in a cryptosystem. This includes dealing with the generation, exchange, storage, use, crypto-shredding (destruction) and replacement of keys. It includes cryptographic protocol design, key servers, user procedures, and other relevant protocols. Key management concerns keys at the user level, either between users or systems. This is in contrast to key scheduling, which typically refers to the internal handling of keys within the operation of a cipher.
IEEE 802.11IEEE 802.11 is part of the IEEE 802 set of local area network (LAN) technical standards, and specifies the set of media access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) computer communication. The standard and amendments provide the basis for wireless network products using the Wi-Fi brand and are the world's most widely used wireless computer networking standards. IEEE 802.
Initialization vectorIn cryptography, an initialization vector (IV) or starting variable is an input to a cryptographic primitive being used to provide the initial state. The IV is typically required to be random or pseudorandom, but sometimes an IV only needs to be unpredictable or unique. Randomization is crucial for some encryption schemes to achieve semantic security, a property whereby repeated usage of the scheme under the same key does not allow an attacker to infer relationships between (potentially similar) segments of the encrypted message.
CryptosystemIn cryptography, a cryptosystem is a suite of cryptographic algorithms needed to implement a particular security service, such as confidentiality (encryption). Typically, a cryptosystem consists of three algorithms: one for key generation, one for encryption, and one for decryption. The term cipher (sometimes cypher) is often used to refer to a pair of algorithms, one for encryption and one for decryption. Therefore, the term cryptosystem is most often used when the key generation algorithm is important.
Advanced Encryption StandardThe Advanced Encryption Standard (AES), also known by its original name Rijndael (ˈrɛindaːl), is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001. AES is a variant of the Rijndael block cipher developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted a proposal to NIST during the AES selection process. Rijndael is a family of ciphers with different key and block sizes.
Key stretchingIn cryptography, key stretching techniques are used to make a possibly weak key, typically a password or passphrase, more secure against a brute-force attack by increasing the resources (time and possibly space) it takes to test each possible key. Passwords or passphrases created by humans are often short or predictable enough to allow password cracking, and key stretching is intended to make such attacks more difficult by complicating a basic step of trying a single password candidate.