Summary
Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security. Elliptic curves are applicable for key agreement, digital signatures, pseudo-random generators and other tasks. Indirectly, they can be used for encryption by combining the key agreement with a symmetric encryption scheme. They are also used in several integer factorization algorithms that have applications in cryptography, such as Lenstra elliptic-curve factorization. The use of elliptic curves in cryptography was suggested independently by Neal Koblitz and Victor S. Miller in 1985. Elliptic curve cryptography algorithms entered wide use in 2004 to 2005. In 1999, NIST recommended fifteen elliptic curves. Specifically, FIPS 186-4 has ten recommended finite fields: Five prime fields for certain primes p of sizes 192, 224, 256, 384, and bits. For each of the prime fields, one elliptic curve is recommended. Five binary fields for m equal 163, 233, 283, 409, and 571. For each of the binary fields, one elliptic curve and one Koblitz curve was selected. The NIST recommendation thus contains a total of five prime curves and ten binary curves. The curves were chosen for optimal security and implementation efficiency. At the RSA Conference 2005, the National Security Agency (NSA) announced Suite B, which exclusively uses ECC for digital signature generation and key exchange. The suite is intended to protect both classified and unclassified national security systems and information. National Institute of Standards and Technology (NIST) has endorsed elliptic curve cryptography in its Suite B set of recommended algorithms, specifically elliptic-curve Diffie–Hellman (ECDH) for key exchange and Elliptic Curve Digital Signature Algorithm (ECDSA) for digital signature. The NSA allows their use for protecting information classified up to top secret with 384-bit keys.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (21)
COM-401: Cryptography and security
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
MATH-489: Number theory II.c - Cryptography
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
CS-523: Advanced topics on privacy enhancing technologies
This advanced course will provide students with the knowledge to tackle the design of privacy-preserving ICT systems. Students will learn about existing technologies to prect privacy, and how to evalu
Show more