Inductive reasoningInductive reasoning is a method of reasoning in which a general principle is derived from a body of observations. It consists of making broad generalizations based on specific observations. Inductive reasoning is distinct from deductive reasoning, where the conclusion of a deductive argument is certain given the premises are correct; in contrast, the truth of the conclusion of an inductive argument is probable, based upon the evidence given.
Engineering design processThe engineering design process, also known as the engineering method, is a common series of steps that engineers use in creating functional products and processes. The process is highly iterative - parts of the process often need to be repeated many times before another can be entered - though the part(s) that get iterated and the number of such cycles in any given project may vary. It is a decision making process (often iterative) in which the basic sciences, mathematics, and engineering sciences are applied to convert resources optimally to meet a stated objective.
Automated reasoningIn computer science, in particular in knowledge representation and reasoning and metalogic, the area of automated reasoning is dedicated to understanding different aspects of reasoning. The study of automated reasoning helps produce computer programs that allow computers to reason completely, or nearly completely, automatically. Although automated reasoning is considered a sub-field of artificial intelligence, it also has connections with theoretical computer science and philosophy.
Knowledge-based systemsA knowledge-based system (KBS) is a computer program that reasons and uses a knowledge base to solve complex problems. The term is broad and refers to many different kinds of systems. The one common theme that unites all knowledge based systems is an attempt to represent knowledge explicitly and a reasoning system that allows it to derive new knowledge. Thus, a knowledge-based system has two distinguishing features: a knowledge base and an inference engine.
Systems analysisSystems analysis is "the process of studying a procedure or business to identify its goal and purposes and create systems and procedures that will efficiently achieve them". Another view sees system analysis as a problem-solving technique that breaks down a system into its component pieces, and how well those parts work and interact to accomplish their purpose. The field of system analysis relates closely to requirements analysis or to operations research.
Systems engineeringSystems engineering is an interdisciplinary field of engineering and engineering management that focuses on how to design, integrate, and manage complex systems over their life cycles. At its core, systems engineering utilizes systems thinking principles to organize this body of knowledge. The individual outcome of such efforts, an engineered system, can be defined as a combination of components that work in synergy to collectively perform a useful function.
Domain-driven designDomain-driven design (DDD) is a major software design approach, focusing on modeling software to match a domain according to input from that domain's experts. Under domain-driven design, the structure and language of software code (class names, class methods, class variables) should match the business domain. For example: if software processes loan applications, it might have classes like "loan application", "customers", and methods such as "accept offer" and "withdraw".
Domain nameIn the Internet, a domain name is a string that identifies a realm of administrative autonomy, authority or control. Domain names are often used to identify services provided through the Internet, such as websites, email services and more. As of 2017, 330.6 million domain names had been registered. Domain names are used in various networking contexts and for application-specific naming and addressing purposes. In general, a domain name identifies a network domain or an Internet Protocol (IP) resource, such as a personal computer used to access the Internet, or a server computer.
Domain-specific languageA domain-specific language (DSL) is a computer language specialized to a particular application domain. This is in contrast to a general-purpose language (GPL), which is broadly applicable across domains. There are a wide variety of DSLs, ranging from widely used languages for common domains, such as HTML for web pages, down to languages used by only one or a few pieces of software, such as MUSH soft code.
Domain-specific modelingDomain-specific modeling (DSM) is a software engineering methodology for designing and developing systems, such as computer software. It involves systematic use of a domain-specific language to represent the various facets of a system. Domain-specific modeling languages tend to support higher-level abstractions than general-purpose modeling languages, so they require less effort and fewer low-level details to specify a given system.