Map-matching for pedestrians via Bayesian inference
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, we present initial investigations towards boosting posterior probability based speech recognition systems by estimating more informative posteriors taking into account acoustic context (e.g., the whole utterance), as well as possible prior i ...
In this paper, we present the development and the implementation of algorithms to access map databases by a user equipped with a pedestrian navigation system. ...
In this paper, we present initial results towards boosting posterior based speech recognition systems by estimating more informative posteriors using multiple streams of features and taking into account acoustic context (e.g., as available in the whole utt ...
This paper presents a Rao-Blackwellized mixed state particle filter for joint head tracking and pose estimation. Rao-Blackwellizing a particle filter consists of marginalizing some of the variables of the state space in order to exactly compute their poste ...
This paper presents a Rao-Blackwellized mixed state particle filter for joint head tracking and pose estimation. Rao-Blackwellizing a particle filter consists of marginalizing some of the variables of the state space in order to exactly compute their poste ...
We consider approximate inference in a class of switching linear Gaussian State Space models which includes the switching Kalman Filter and the more general case of switch transitions dependent on the continuous hidden state. The method is a novel form of ...
We consider approximate inference in a class of switching linear Gaussian State Space models which includes the switching Kalman Filter and the more general case of switch transitions dependent on the continuous hidden state. The method is a novel form of ...
In this paper we present a graphical model for polyphonic music transcription. Our model, formulated as a Dynamical Bayesian Network, embodies a transparent and computationally tractable approach to this acoustic analysis problem. An advantage of our appro ...
We introduce a new method for approximate inference in Hybrid Dynamical Graphical models, in particular, for switching dynamical networks. For the important special case of switching linear Gaussian state space models (switching Kalman Filters), our method ...
A Monte-Carlo method is used to calibrate a randomly placed sensor node using helicopter sounds. The calibration is based on using the GPS information from the helicopter and the estimated DOA's at the node. The related Cramer-Rao lower bound is derived an ...