Empirical probabilityIn probability theory and statistics, the empirical probability, relative frequency, or experimental probability of an event is the ratio of the number of outcomes in which a specified event occurs to the total number of trials, i.e., by means not of a theoretical sample space but of an actual experiment. More generally, empirical probability estimates probabilities from experience and observation. Given an event A in a sample space, the relative frequency of A is the ratio \tfrac m n, m being the number of outcomes in which the event A occurs, and n being the total number of outcomes of the experiment.
Probability interpretationsThe word probability has been used in a variety of ways since it was first applied to the mathematical study of games of chance. Does probability measure the real, physical, tendency of something to occur, or is it a measure of how strongly one believes it will occur, or does it draw on both these elements? In answering such questions, mathematicians interpret the probability values of probability theory. There are two broad categories of probability interpretations which can be called "physical" and "evidential" probabilities.
Land-use forecastingLand-use forecasting undertakes to project the distribution and intensity of trip generating activities in the urban area. In practice, land-use models are demand-driven, using as inputs the aggregate information on growth produced by an aggregate economic forecasting activity. Land-use estimates are inputs to the transportation planning process. The discussion of land-use forecasting to follow begins with a review of the Chicago Area Transportation Study (CATS) effort.
Law of total probabilityIn probability theory, the law (or formula) of total probability is a fundamental rule relating marginal probabilities to conditional probabilities. It expresses the total probability of an outcome which can be realized via several distinct events, hence the name. The law of total probability is a theorem that states, in its discrete case, if is a finite or countably infinite partition of a sample space (in other words, a set of pairwise disjoint events whose union is the entire sample space) and each event is measurable, then for any event of the same sample space: or, alternatively, where, for any for which these terms are simply omitted from the summation, because is finite.
Independence of irrelevant alternativesThe independence of irrelevant alternatives (IIA), also known as binary independence or the independence axiom, is an axiom of decision theory and various social sciences. The term is used in different connotation in several contexts. Although it always attempts to provide an account of rational individual behavior or aggregation of individual preferences, the exact formulation differs widely in both language and exact content. Perhaps the easiest way to understand the axiom is how it pertains to casting a ballot.