Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Vertebrate Hox genes are activated in a spatiotemporal sequence that reflects their clustered organization. While this colinear relationship is a property of most metazoans with an anterior to posterior polarity, the underlying molecular mechanisms are unknown. Previous work suggested that Hox genes were made progressively available for transcription in the course of gastrulation, implying the existence of an element capable of initiating a repressive conformation, subsequently relieved from the clusters sequentially. We searched for this element by combining a genomic walk with successive transgene insertions upstream of the HoxD complex followed by a series of deletions. The largest deficiency induced posterior homeotic transformations coincidentally with an earlier activation of Hoxd genes. These data suggest that a regulatory element located upstream of the complex is necessary for setting up the early pattern of Hox gene colinear activation.
Denis Duboule, Marion Leleu, Pierre Raymond Fabre
Alexandre Gauthier Aurèle Mayran