Publication

Imaging of G protein-coupled receptors in solid- supported planar membranes at the single molecule level

Theo Lasser, Marcel Leutenegger
2008
Conference paper
Abstract

Odorant receptors are an excellent example of natural superiority in specifically binding specific, small and hydrophobic molecules. They are of particular interest in the development of a sensor platform for G protein- coupled receptors (GPCRs). Odorant receptors (OR5) of Rattus norvegicus were incorporated into model membranes by in vitro synthesis and vectorial incorporation for achieving natural receptor function. The vectorial insertion of OR5 into the planar membrane and their lateral distribution, their interactions and their mobility within the membrane are of great importance for ligand-receptor interaction. We applied total internal reflection fluorescence (TIRF) microscopy and image analysis to assess the insertion and the OR5 distribution as well as the lateral mobility of these receptors at the single molecule level. The vectorial incorporation of OR5 into planar lipid membranes was investigated with TIRF microscopy and image segmentation. With increasing expression time, the OR5 incorporation density and aggregation increased linearly by about 0.02µm- 2min- 1. The expression and incorporations of single OR5s were completed within about 8 minutes. The mobility of the incorporated receptors was measured with fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photo-bleaching (FRAP). These measurements revealed that the incorporated receptors were immobilized with this class of lipid membranes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.