Global Sawtooth Instability Measured by Magnetic Coils in the Jet Tokamak
Related publications (40)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The design point that had been chosen for EU DEMO in 2016 is reviewed here and a modification is proposed with a lower aspect ratio. Previously the same aspect ratio, A, was chosen for EU DEMO as in major tokamak experiments including ITER (A = 3.1), and, ...
Tokamaks allow to confine fusion plasma with magnetic fields. The prediction/reconstruction of the last closed-flux surface (LCFS) is one of the primary challenges in the control of the magnetic configuration. The evolution in time of the LCFS is determine ...
This thesis delves into the potential of magnetic fusion energy, and in particular focuses on the stellarator concept. Stellarators use external coils to produce 3-dimensional (3D) magnetic fields that confine a thermonuclear plasma in a topologically toro ...
Understanding the turbulent dynamics in the outermost region of the tokamak is essential to predict and control the heat and particle loads to the vessel wall, a crucial problem for the entire fusion program. In this thesis, the problem is approached via t ...
We present the results of 3D, flux-driven, global, two-fluid electrostatic turbulence simulations in a 5-field period stellarator with an island divertor. The numerical simulations are carried out with the GBS code, which solves the two-fluid drift-reduced ...
Microturbulence driven by plasma instabilities is in most cases the dominant cause of heat and particle loss from the core of magnetic confinement fusion devices and therefore presents a major challenge in achieving burning plasma conditions. The role of p ...
The overall performance of a tokamak strongly depends on phenomena that take place in a thin region between the main plasma and the vessel wall, which is denoted as tokamak boundary. In fact, the formation of transport barriers in this region can significa ...
Neoclassical Tearing Modes (NTMs) are widely observed in tokamak plasmas. They have a detrimental effect on plasma confinement and may even lead to disruptions. Therefore it is important to understand the evolution of NTMs, which is influenced by several e ...
Understanding generation and mitigation of runaway electrons in disruptions is important for the safe operation of future tokamaks. In this paper we investigate the runaway dynamics in reactor-scale spherical tokamaks, focusing on a compact nominal design ...
It is well known that helical magnetic fields undergo a so-called inverse cascade by which their correlation length grows due to the conservation of magnetic helicity in classical ideal magnetohydro-dynamics (MHD). At high energies above approximately 10 M ...