**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Studying the effect of non-adiabatic passing electron dynamics on microturbulence self-interaction in fusion plasmas using gyrokinetic simulations

Abstract

Microturbulence driven by plasma instabilities is in most cases the dominant cause of heat and particle loss from the core of magnetic confinement fusion devices and therefore presents a major challenge in achieving burning plasma conditions. The role of passing electron dynamics in turbulent transport driven by ion-scale microinstabilities, in particular Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) instabilities, has been given relatively little attention. In first approximation, these particles, which are highly mobile along the confining magnetic field, are assumed to respond adiabatically to the low frequency ion-scale modes. However, near mode rational surfaces (MRSs), the non-adiabatic response of passing electrons becomes important and can no longer be neglected. This non-adiabatic electron response actually has a destabilising effect and leads to generation of fine-structures located at the MRSs of each eigenmode. This thesis focuses on the effects of non-adiabatic response of passing electrons in tokamak core turbulence.

One such effect of non-adiabatic passing electrons that is of particular interest to this work is the self-interaction mechanism. It is essentially a process by which a microinstability eigenmode that is extended along the direction parallel to the magnetic field interacts non-linearly with itself, in turn generating E x B zonal flows. Unlike the usual picture of zonal flow drive in which microinstability eigenmodes coherently amplify the flow via modulational instabilities, the self-interaction drive of zonal flows from these eigenmodes are uncorrelated with each other. In the case of ITG driven turbulence, using novel statistical diagnostic methods, it is shown that the associated shearing rate of the fluctuating zonal flows therefore reduces as more toroidal modes are resolved in the simulation. In simulations accounting for the full toroidal domain, such an increase in the density of toroidal modes corresponds in fact to an increase in the system size, leading to a finite system size effect that is distinct from the other better known system size effects such as profile shearing or finite radial extend of the unstable region.

The study of non-adiabatic passing electron dynamics is pursued further to include more reactor relevant conditions such as collisions and background shear flow. It is found that, with increasing collisionality, electrons behave more adiabatic-like, especially the trapped electrons away from MRSs, thereby leading to a decrease in the growth rate of ITG eigenmodes. Furthermore, the shortened electron mean free path in presence of collisions leads to a radial broadening of the fine-structures at the MRS of corresponding eigenmodes. In nonlinear simulations, the turbulent flux levels decrease with increasing collisionality, as a result of the reduced drive from the less unstable ITG eigenmodes. The radial width of the fine structures at MRSs is found to reduce with increasing collisionality as a result of reduced nonlinear modification of the eigenmodes in turbulence simulations. A study of the effect of collisions on the self-interaction mechanism reveals that for physically relevant values of collisionality, the effect of self-interaction is still significant. A preliminary study of the effect of background E x B flow shear shows that the fine-structures associated with the non-adiabatic passing electron response persist even with finite background flow.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (29)

Electron

The electron (Electron or beta-) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family

Instability

In dynamical systems instability means that some of the outputs or internal states increase with time, without bounds. Not all systems that are not stable are unstable; systems can also be marginall

Magnetic confinement fusion

Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major b

Related publications (129)

Loading

Loading

Loading

Justin Richard Ball, Stephan Brunner, Ajay Chandrarajan Jayalekshmi, Julien Stanislas Pierre Dominski, Gabriele Merlo

Self-interaction is the process by which a microinstability eigenmode that is extended along the direction parallel to the magnetic field interacts non-linearly with itself. This effect is particularly significant in gyrokinetic simulations accounting for kinetic passing electron dynamics and is known to generate stationary E×B zonal flow shear layers at radial locations near low-order mode rational surfaces (Weikl et al. Phys. Plasmas, vol. 25, 2018, 072305). We find that self-interaction, in fact, plays a very significant role in also generating fluctuating zonal flows, which is critical to regulating turbulent transport throughout the radial extent. Unlike the usual picture of zonal flow drive in which microinstability eigenmodes coherently amplify the flow via modulational instabilities, the self-interaction drive of zonal flows from these eigenmodes are uncorrelated with each other. It is shown that the associated shearing rate of the fluctuating zonal flows therefore reduces as more toroidal modes are resolved in the simulation. In simulations accounting for the full toroidal domain, such an increase in the density of toroidal modes corresponds to an increase in the toroidal system size, leading to a finite system size effect that is distinct from the well-known profile shearing effect.

2020Julien Stanislas Pierre Dominski

In tokamak fusion plasmas, micro-turbulence transport is known to be the cause of large losses of heat and particles. The present work deals with the study of electrostatic micro-turbulence transport driven by instabilities of essentially two types: the ion temperature gradient (ITG) modes and the trapped electron modes (TEM). The plasma is described within the gyrokinetic framework, which permits to save computational resources compared to the classical Vlasov kinetic description. In gyrokinetic simulations of fusion plasmas, the passing electrons are often assumed fast enough so that they respond instantaneously to the electrostatic perturbations. In this case, their response is computed adiabatically instead of kinetically. The main advantage is that this simplified model for the electron response is less demanding in computational resources. This assumption is nonetheless incorrect, in particular near mode rational surfaces where the non-adiabatic response of passing electrons cannot be neglected. This thesis work focuses on the study of this passing electron non-adiabatic response, whose influence on microturbulence is studied by means of numerical simulations carried out with the gyrokinetic codes GENE and ORB5. In the first part of this thesis work, the response of passing electrons in ITG and TEM microturbulence regimes is studied by making use of the flux-tube version of the GENE code. Results are obtained using two different electron models, fully kinetic and hybrid. In the hybrid model, passing particles are forced to respond adiabatically while trapped are handled kinetically. Comparing linear eigenmodes obtained with these two models enables one to systematically isolate fine radial structures located at corresponding mode rational surfaces, clearly resulting from the non-adiabatic passing-electron response. Nonlinear simulations show that these fine structures on the non-axisymmetric modes survive in the turbulent phase. Furthermore, through nonlinear coupling to axisymmetric modes, they induce radial modulations in the effective profiles of density, ion and electron temperature and zonal flows $E \times B$ shearing rate. Finally, the passing-electron channel is shown to significantly contribute to the transport levels, at least in our ITG case. Also shown is that the passing electrons significantly influence the $E \times B$ saturation mechanism of turbulent fluxes. Following this study in flux tube geometry, the influence of the non-adiabatic passing electron response near mode rational surfaces is further studied in global geometry with the global gyrokinetic code ORB5, in which a new field solver is implemented for the gyrokinetic quasi-neutrality equation valid at arbitrary wavelength, overcoming the former long wavelength approximation made in the original version of the code. A benchmark is conducted against the global version of the gyrokinetic code GENE, showing very good agreement. Nonlinear simulations are carried out with the new solver in conditions relevant to the TCV tokamak, with the physical deuterium to electron mass ratio ($m_i/m_e=3672$) and are compared to simulations carried out with heavy electrons ($m_i/m_e=400$). The particular spectral organization of the passing electron turbulent flux and its dependence on the radial profile of the safety factor are revealed. In particular, the formation of short-scale transport barriers is studied near low-order mode rational surfaces. Results show that quantitatively correct nonlinear fully-kinetic simulations of tokamak transport must be carried out in a full torus and with the physical mass ratio.

The goal of thermonuclear fusion research is to provide power plants, that will be able to produce one gigawatt of electricity. Among the different ways to achieve fusion, the tokamak, based on magnetic confinement, is the most promising one. A gas is heated up to hundreds of millions of degrees and becomes a plasma, which is maintained – or confined – in a toroidal vessel by helical magnetic field lines. Then, deuterium and tritium are injected and fuse to create an α particle and an energetic neutron. In order to have a favorable power balance, the power produced by fusion reactions must exceed the power needed to heat the plasma and the power losses. This can be cast in a very simple expression which stipulates that the product of the density, the temperature and the energy confinement time must exceed some given value. Unfortunately, present-days tokamaks are not able to reach this condition, mostly due to plasma turbulence. The latter phenomenon enhances the heat losses and degrades the energy confinement time, which cannot be predicted by analytical theories such as the so-called neoclassical theory in which the heat losses are caused by Coulomb collisions. Therefore, numerical simulations are being developed to model plasma turbulence, mainly caused by the Ion and Electron Temperature-Gradient and the Trapped-Electron-Mode instabilities. The plasma is described by a distribution function which evolves according to the Vlasov equation. The electromagnetic fields created by the particles are self-consistently obtained through Maxwell's equations. The resulting Vlasov-Maxwell system is greatly simplified by using the gyrokinetic theory, which consists, through an appropriate ordering, of eliminating the fast gyromotion (compared to the typical frequency of instabilities). Nevertheless, it is still extremely difficult to solve this system numerically due to the large range of time and spatial scales to be resolved. In this thesis, the Vlasov-Maxwell system is solved in the electrostatic and collisionless limit with the Particle-In-Cell (PIC) ORB5 code in global tokamak geometry. This Monte-Carlo approach suffers from statistical noise which unavoidably degrades the quality of the simulation. Consequently, the first part of this work has been devoted to the optimization of the code with a view to reduce the numerical noise. The code has been rewritten in a new coordinate system which takes advantage of the anisotropy of turbulence, which is mostly aligned with the magnetic field lines. The overall result of the optimization is that for a given accuracy, the CPU time has been decreased by a factor two thousand, the total memory has been decreased by a factor ten and the numerical noise has been reduced by a factor two hundred. In addition, the scaling of the code with respect to plasma size is presently optimal, suggesting that ORB5 could compute heat transport for future fusion devices such as ITER. The second part of this thesis presents the validation of the code with numerical convergence tests, linear (including dispersion relations) and nonlinear benchmarks. Furthermore, the code has been applied to important issues in gyrokinetic theory. It is shown for the first time that a 5D global delta-f PIC code can achieve a thermodynamic steady state on the condition that some dissipation is present. This is a fundamental result as the main criticism against delta-f PIC codes is their inability to deal with long time simulations. Next, the role of the parallel nonlinearity is studied and it is demonstrated in this work that this term has no real influence on turbulence, provided the numerical noise is sufficiently low. This result should put an end to the controversy that recently occurred, in which gyrokinetic simulations using different numerical approaches yielded contradictory results. Finally, thanks to the optimization of the code, the gyrokinetic model has been extended to include the kinetic response of trapped-electrons, in place to the usual adiabatic (Boltzmann) approximation. For the first time, global TEM nonlinear simulations are presented, and the role of the zonal flow on heat transport is analyzed. This study will help in acquiring some knowledge on the less-known TEM turbulence (as compared to ITG). In conclusion, this thesis is one of the main steps of the development of ORB5, which is now a state-of-the-art gyrokinetic code for collisionless ITG and TEM turbulence, and has brought several contributions to the understanding of these phenomena.