Applicability of the ballooning transform to trapped ion modes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Gyrotrons are a class of high-power vacuum-electronics microwave sources, which are envisioned to play an important role in the domain of magnetically confined fusion plasmas. Indeed, only gyrotrons are capable of producing continuous electromagnetic waves ...
Turbulence driven by small-scale instabilities results in strong heat and particle transport, which significantly shortens the confinement time and prevents the formation of a self-sustained plasma reaction in magnetic confinement devices. Control and poss ...
Microturbulence driven by plasma instabilities is in most cases the dominant cause of heat and particle loss from the core of magnetic confinement fusion devices and therefore presents a major challenge in achieving burning plasma conditions. The role of p ...
Controlled thermonuclear fusion is the main goal of plasma physics. At the Swiss Plasma Center, the Tokamak `a Configuration Variable (TCV) constitutes the main experiment on fusion research, where high temperature plasmas are confined by means of magneti ...
Tokamak devices aim to magnetically confine a hydrogen plasma at sufficiently high pressure to achieve net energy production from nuclear fusion of light isotopes. Predictive modeling and optimization is crucial for reliable operation of tokamak reactors, ...
Tokamaks and stellarators are the most promising reactor concepts using the magnetic confinement to contain the plasma fuel. Reactors capable of sustaining deuterium-tritium (D-T) fusion reactions requires the confinement of a very high temperature plasma ...
Wall conditioning is essential in tokamak and stellarator research to achieve plasma performance and reproducibility. This paper presents an overview of recent conditioning results, both from experiments in present devices and modelling, in view of devices ...
In many tokamak and stellarator experiments around the globe that arc investigating energy production via controlled thermonuclear fusion, electron cyclotron heating and current drive (ECH&CD) are used for plasma start-up, heating, non-inductive current dr ...
Fast ion confinement is crucial for the demonstration of the stellarator approach towards fu- sion energy. To study confinement of fast ions with today’s stellarators advanced RF heating schemes can be used to generate fast ions. Secondly, advanced RF heat ...
A key feature of the new digital plasma control system installed on the TCV (Tokamak à Configuration Variable) tokamak is its possibility to rapidly design, test and deploy real-time algorithms. It accommodates hundreds of diagnostic inputs and actuator ou ...