Publication

Experimental study of the dependence of the damping rate of n=1 TAEs on the on-axis safety factor and toroidal rotation shear

Ambrogio Fasoli, Duccio Testa
2005
Journal paper
Abstract

The dependence of the measured damping rate (gamma/omega) on the value of the safety factor on axis (q(0)) and of the toroidal rotation shear has been experimentally determined for n = 1 toroidal Alfven eigenmodes (TAEs) in JET limiter plasmas with a monotonic safety factor profile and low edge magnetic shear. For q(0) < 1, the n = 1 TAE damping rate can reach values up to (gamma/omega) > 8%, whereas for q(0) > 1.1, gamma/omega) < 2% for similar experimental conditions. The existence of these two separate regimes is suggestive of a possible role of the sawteeth on the damping of low-n TAEs, for example, via a redistribution of the core plasma current, which would, in turn, affect the magnetic shear profile. The value of the toroidal rotation shear affects the n = 1 TAE damping rate only at high neutral beam injection power (P-NBI): for PNBI > 6.5 MW we find that gamma/omega > 2% in plasmas with a higher rotation shear, whereas for lower PNBI we do not observe any appreciable effect of the rotation shear on the damping rate. These observations indicate that different damping mechanisms for low-n TAEs may be active at low and high performance.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.