A 'magnetic' interatomic potential for molecular dynamics simulations
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Machine learned interatomic interaction potentials have enabled efficient and accurate molecular simulations of closed systems. However, external fields, which can greatly change the chemical structure and/or reactivity, have been seldom included in curren ...
Molecular simulations allow to investigate the behaviour of materials at the atomistic level, shedding light on phenomena that cannot be directly observed in experiments. Accurate results can be obtained with ab initio methods, while simulations of large-s ...
Metal cations often play an important role in shaping the three-dimensional structure of peptides. As an example, the model system AcPheAla5LysH+ is investigated in order to fully understand the forces that stabilize its helical structure. In particular, t ...
This thesis explores the application of semiclassical methods in the study of states with large quantum numbers for theories invariant under internal symmetries.
In the first part of the thesis, we study zero-temperature superfluids. These provide a gener ...
Atomistic simulations are a powerful complement to experimental probes for understanding the nanoscale processes associated with the effects of hydrogen (H) on plasticity and fracture that are the underlying causes of hydrogen embrittlement (HE). Current e ...
Lattice dynamics in low-dimensional materials and, in particular, the quadratic behaviour of the flexural acoustic modes play a fundamental role in their thermomechanical properties. A first-principles evaluation of these can be very demanding, and can be ...
This paper reviews atomistic force field parameterizations for molecular simulations of cementitious minerals, such as tricalcium silicate (C3S), portlandite (CH), tobermorites (model C-S-H). Computational techniques applied to these materials include clas ...
We present a relativistic effective field theory for the interaction between acoustic and gapped phonons in the limit of a small gap. We show that, while the former are the Goldstone modes associated with the spontaneous breaking of spacetime symmetries, t ...
Symmetries are omnipresent and play a fundamental role in the description of Nature. Thanks to them, we have at our disposal nontrivial selection rules that dictate how a theory should be constructed. This thesis, which is naturally divided into two parts, ...
We establish a classical analog of the Nambu-Goldstone theorem for spontaneous breaking of spacetime symmetries. It provides a counting rule for independent Nambu-Goldstone fields and states which of them are gapped. We demonstrate that only those symmetry ...