Publication

Energy-aware stage illumination

Friedrich Eisenbrand
2005
Conference paper
Abstract

Consider the following illumination problem: given a stage represented by a line segment L and a set of lightsources represented by a set of points S in the plane, assign powers to the lightsources such that every point on the stage receives a sufficient amount - let's say one unit - of light while minimizing the overall power consumption. By assuming that the amount of light arriving from a fixed lightsource decreases rapidly with the distance from the lightsource, this becomes an interesting optimization problem. We propose to reconsider the classical illumination problems as known from computational geometry literature (e.g. [12]) under this light attenuation model. This paper examines the simple problem introduced above and presents different solutions, based on convex optimization, discretization and linear programming, as well as a purely combinatorial approximation algorithm. Some experimental results are also provided. Copyright 2005 ACM.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Light
Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terahertz, between the infrared (with longer wavelengths) and the ultraviolet (with shorter wavelengths). In physics, the term "light" may refer more broadly to electromagnetic radiation of any wavelength, whether visible or not. In this sense, gamma rays, X-rays, microwaves and radio waves are also light.
Linear programming
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints.
Convex optimization
Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.
Show more
Related publications (36)

A Spatial Branch and Bound Algorithm for Continuous Pricing with Advanced Discrete Choice Demand Modeling

Michel Bierlaire

In this paper, we present a spatial branch and bound algorithm to tackle the continuous pricing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced DCMs, like mixed logit or latent class models, are capable of modeling de ...
2023

Augmented Lagrangian Methods for Provable and Scalable Machine Learning

Mehmet Fatih Sahin

Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
EPFL2023

On The Convergence Of Stochastic Primal-Dual Hybrid Gradient

Volkan Cevher, Ahmet Alacaoglu

In this paper, we analyze the recently proposed stochastic primal-dual hybrid gradient (SPDHG) algorithm and provide new theoretical results. In particular, we prove almost sure convergence of the iterates to a solution with convexity and linear convergenc ...
SIAM PUBLICATIONS2022
Show more
Related MOOCs (7)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Optimization: principles and algorithms - Linear optimization
Introduction to linear optimization, duality and the simplex algorithm.
Optimization: principles and algorithms - Linear optimization
Introduction to linear optimization, duality and the simplex algorithm.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.