TheoremIn mathematics, a theorem is a statement that has been proved, or can be proved. The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic.
Integer overflowIn computer programming, an integer overflow occurs when an arithmetic operation attempts to create a numeric value that is outside of the range that can be represented with a given number of digits – either higher than the maximum or lower than the minimum representable value. The most common result of an overflow is that the least significant representable digits of the result are stored; the result is said to wrap around the maximum (i.e. modulo a power of the radix, usually two in modern computers, but sometimes ten or another radix).
Carathéodory's criterionCarathéodory's criterion is a result in measure theory that was formulated by Greek mathematician Constantin Carathéodory that characterizes when a set is Lebesgue measurable. Carathéodory's criterion: Let denote the Lebesgue outer measure on where denotes the power set of and let Then is Lebesgue measurable if and only if for every where denotes the complement of Notice that is not required to be a measurable set.
Green's theoremIn vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem. Let C be a positively oriented, piecewise smooth, simple closed curve in a plane, and let D be the region bounded by C. If L and M are functions of (x, y) defined on an open region containing D and have continuous partial derivatives there, then where the path of integration along C is anticlockwise.
MachiningMachining is a process in which a material (often metal) is cut to a desired final shape and size by a controlled material-removal process. The methods that have this common theme are collectively called subtractive manufacturing, which utilizes machine tools, in contrast to additive manufacturing (3D printing), which uses controlled addition of material. Machining is a part of the manufacture of many metal products, but it can also be used on other materials such as wood, plastic, ceramic, and composite material.
Carathéodory's extension theoremIn measure theory, Carathéodory's extension theorem (named after the mathematician Constantin Carathéodory) states that any pre-measure defined on a given ring of subsets R of a given set Ω can be extended to a measure on the σ-ring generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure.
Integer (computer science)In computer science, an integer is a datum of integral data type, a data type that represents some range of mathematical integers. Integral data types may be of different sizes and may or may not be allowed to contain negative values. Integers are commonly represented in a computer as a group of binary digits (bits). The size of the grouping varies so the set of integer sizes available varies between different types of computers. Computer hardware nearly always provides a way to represent a processor register or memory address as an integer.
Ordered vector spaceIn mathematics, an ordered vector space or partially ordered vector space is a vector space equipped with a partial order that is compatible with the vector space operations. Given a vector space over the real numbers and a preorder on the set the pair is called a preordered vector space and we say that the preorder is compatible with the vector space structure of and call a vector preorder on if for all and with the following two axioms are satisfied implies implies If is a partial order compatible with the vector space structure of then is called an ordered vector space and is called a vector partial order on The two axioms imply that translations and positive homotheties are automorphisms of the order structure and the mapping is an isomorphism to the dual order structure.
States' rightsIn American political discourse, states' rights are political powers held for the state governments rather than the federal government according to the United States Constitution, reflecting especially the enumerated powers of Congress and the Tenth Amendment. The enumerated powers that are listed in the Constitution include exclusive federal powers, as well as concurrent powers that are shared with the states, and all of those powers are contrasted with the reserved powers—also called states' rights—that only the states possess.
ExistenceExistence is the ability of an entity to interact with reality. In philosophy, it refers to the ontological property of being. The term existence comes from Old French existence, from Medieval Latin existentia/exsistentia, from Latin existere, to come forth, be manifest, ex + sistere, to stand. Materialism holds that the only things that exist are matter and energy, that all things are composed of material, that all actions require energy, and that all phenomena (including consciousness) are the result of the interaction of matter.