Concept

Carathéodory's criterion

Carathéodory's criterion is a result in measure theory that was formulated by Greek mathematician Constantin Carathéodory that characterizes when a set is Lebesgue measurable. Carathéodory's criterion: Let denote the Lebesgue outer measure on where denotes the power set of and let Then is Lebesgue measurable if and only if for every where denotes the complement of Notice that is not required to be a measurable set. The Carathéodory criterion is of considerable importance because, in contrast to Lebesgue's original formulation of measurability, which relies on certain topological properties of this criterion readily generalizes to a characterization of measurability in abstract spaces. Indeed, in the generalization to abstract measures, this theorem is sometimes extended to a definition of measurability. Thus, we have the following definition: If is an outer measure on a set where denotes the power set of then a subset is called or if for every the equalityholds where is the complement of The family of all –measurable subsets is a σ-algebra (so for instance, the complement of a –measurable set is –measurable, and the same is true of countable intersections and unions of –measurable sets) and the restriction of the outer measure to this family is a measure.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.