Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Conducting tissue healing and regeneration through biomaterials and morphogens is still an unrealized goal. Understand the multiple roles of the extracellular matrix (ECM) is indeed essential for the design of successful regenerative medicine strategies. D ...
Although growth factors naturally exert their morphogenetic influences within the context of the extracellular matrix microenvironment, the interactions among growth factors, their receptors, and other extracellular matrix components are typically ignored ...
Cell organization into functional multicellular three-dimensional structures is a long-standing challenge. In particular, engineering of vascularized tissues requires both blood and lymphatic neovascular network formation in a simultaneous and coordinated ...
Currently, both congenital abnormalities and developmental problems of the bladder in children, and other dysfunctions in adults, require reconstructive surgery. Such correction involves transplant action of native tissues (such as gastrointestinal segment ...
It has recently been shown that some growth factors (GFs) have strong interactions with nonproteoglycan extracellular matrix proteins. Relevant here, the 12th-14th type three repeats of fibronectin (FN III12-14) have been shown to bind insulin-like growth ...
Federation of American Society of Experimental Biology2010
Formation of new vessels in granulation tissue during wound healing has been assumed to occur solely through sprouting angiogenesis. In contrast, we show here that neovascularization can be accomplished by nonangiogenic expansion of preexisting vessels. Us ...
Stem cell use in bladder tissue engineering is a recently addressed area of investigation that has generated excitement as a novel way to restore and regenerate lost or damaged urinary bladder tissue. The remodelling of smooth muscle plays a significant ro ...
Cardiovascular diseases, including myocardial infarction, are the leading cause of death worldwide for both men and women. Current therapies are limited by the restricted intrinsic regeneration capacity of the heart and by the lack of organs for transplant ...
The in vitro potential of a synthetic matrix metalloproteinase (MMP)-responsive poly(ethylene glycol) (PEG)-based hydrogel as a bioactive co-encapsulation system for vascular cells and a small bioactive peptide, thymosin beta 4 (T beta 4), was examined. We ...
A major challenge for therapeutic delivery of angiogenic agents such as vascular endothelial growth factor (VEGF) is to achieve sustained, low dose signaling leading to durable neovessel formation. To this end, we recently created a variant of VEGF(121), T ...