Gomory-chvatal cutting planes and the elementary closure of polyhedra
Related publications (44)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We find an optimal upper bound on the volume of the John ellipsoid of a k-dimensional section of the n-dimensional cube, and an optimal lower bound on the volume of the Lowner ellipsoid of a projection of the n-dimensional cross-polytope onto a k-dimension ...
An integer program (IP) is a problem of the form min{f(x):Ax=b,l≤x≤u,x∈Zn}, where A∈Zm×n, b∈Zm, l,u∈Zn, and f:Zn→Z is a separable convex objective function.
The problem o ...
We show that Cutting Planes (CP) proofs are hard to find: Given an unsatisfiable formula F, It is -hard to find a CP refutation of F in time polynomial in the length of the shortest such refutation; and unless Gap-Hitting-Set admits a nontrivial algorithm, ...
We present the design of a motion planning algorithm that ensures safety for an autonomous vehicle. In particular, we consider a multimodal distribution over uncertainties; for example, the uncertain predictions of future trajectories of surrounding vehicl ...
We show the Jordan property for regional fundamental groups of klt singularities of fixed dimension. Furthermore, we prove the existence of effective simultaneous index 1 covers for n-dimensional klt singularities. We give an application to the study of lo ...
We introduce a novel intrinsic volume concept in tropical geometry. This is achieved by developing the foundations of a tropical analog of lattice point counting in polytopes. We exhibit the basic properties and compare it to existing measures. Our exposit ...
In this thesis we investigate a number of problems related to 2-level polytopes, in particular from the point of view of the combinatorial structure and the extension complexity. 2-level polytopes were introduced as a generalization of stable set polytopes ...
We answer several questions posed by Beck, Cox, Delgado, Gubeladze, Haase, Hibi, Higashitani, and Maclagan in [Cox et al. 14, Question 3.5 (1),(2), Question 3.6], [Beck et al. 15, Conjecture 3.5(a),(b)], and [Hasse et al. 07, Open question 3 (a),(b) p. 231 ...
Deterministic protocols are well-known tools to obtain extended formulations, with many applications to polytopes arising in combinatorial optimization. Although constructive, those tools are not output-efficient, since the time needed to produce the exten ...
2-level polytopes naturally appear in several areas of pure and applied mathematics, including combinatorial optimization, polyhedral combinatorics, communication complexity, and statistics. In this paper, we present a study of some 2-level polytopes arisi ...