Publication

Combining Multiple Results of a Reverse Engineering Algorithm: Application to the DREAM Five Gene Network Challenge

Abstract

The output of reverse engineering methods for biological networks is often not a single network prediction, but an ensemble of networks that are consistent with the experimentally measured data. In this paper, we consider the problem of combining the information contained within such an ensemble in order to (1) make more accurate network predictions and (2) estimate the reliability of these predictions. We review existing methods, discuss their limitations, and point out possible research directions towards more advanced methods for this purpose. The potential of considering ensembles of networks, rather than individual inferred networks, is demonstrated by showing how an ensemble voting method achieved winning performance on the Five Gene Network Challenge of the second DREAM conference (Dialogue on Reverse Engineering Assessment and Methods 2007, New York, NY).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.