The evolution of the mobile dislocation density during successive stress relaxation transients
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Tuning the mechanical properties of metals, including strength, through adjusting the type and/or concentration of added solute elements, has been recognized as an effective way to design and produce materials with desired or optimized mechanical propertie ...
Mo-Ti alloys form solid solutions over a wide range of compositions, with lattice misfit parameters increasing significantly with titanium content. This indicates a strong increase in the critical stress for edge dislocation motion. Here, we probe the tran ...
The industrial applications of Mg, the lightest structural metal, and abundant in Earth's crust, are hampered by its low intrinsic ductility and low fracture toughness at room temperature which is attributed to the underlying less symmetric and plastically ...
Body-centered-cubic (BCC) high entropy alloys (HEAs) can show exceptionally high strength up to high temperatures. Mechanistic theories are needed to guide alloy discovery within the immense multicomponent HEA compositional space. Here, two new theories fo ...
Precipitation strengthening is one of the key strengthening strategies in many industrial alloys like aluminum alloys, nickel-based superalloys, etc. The yield strength of alloy is improved by forming precipitates in materials and employing them as obstacl ...
To reveal the operating mechanisms of plastic deformation in an FCC high-entropy alloy, the activation volumes in CrMnFeCoNi have been measured as a function of plastic strain and temperature between 77 K and 423 K using repeated load relaxation experiment ...
Under common processing conditions, both dilute and complex concentrated alloys are often realized as random alloys, with no correlation in the occupancy of lattice sites by the constituent atom types. The current thesis primary addresses two problems in r ...
Recent theory proposes that edge dislocations in random body-centered cubic (BCC) high entropy alloys have high barriers for motion, conveying high strengths up to high temperatures. Here, the energy barriers for edge motion are computed for two model allo ...
Recent surging interest in strengthening of High Entropy Alloys (HEAs) with possible chemical ordering motivates the development of new theory. Here, an existing theory for random alloys that accounts for solute-dislocation and solute–solute interactions i ...
Alloying Mg with rare-earth elements, such as Nd, Gd, or Y, enables hardening from the precipitation of metastable coherent phases during aging at low temperatures. While the aging potential of binary Mg-Nd alloys is relatively limited due to the nucleatio ...