**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Une dégustation topologique: homotopy theory in the Swiss Alps : Proceedings of the Arolla conference on algebraic topology, Arolla, Switzerland, August 25-September 1, 1999.

2000

Conference proceedings

Conference proceedings

Abstract

The talks given at the Arolla Conference on Algebraic Topology covered a broad spectrum of current research in homotopy theory, offering participants the possibility to sample and relish selected morsels of homotopy theory, much as a participant in a wine tasting partakes of a variety of fine wines. True to the spirit of the conference, the proceedings included in this volume present a savory sampler of homotopical delicacies. Readers will find within these pages a compilation of articles describing current research in the area, including classical stable and unstable homotopy theory, configuration spaces, group cohomology, K-theory, localization, p-compact groups, and simplicial theory.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (48)

Related concepts (43)

Ontological neighbourhood

A¹ homotopy theory

In algebraic geometry and algebraic topology, branches of mathematics, A1 homotopy theory or motivic homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky. The underlying idea is that it should be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval [0, 1], which is not an algebraic variety, with the affine line A1, which is.

Stable homotopy theory

In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the Freudenthal suspension theorem, which states that given any pointed space , the homotopy groups stabilize for sufficiently large. In particular, the homotopy groups of spheres stabilize for . For example, In the two examples above all the maps between homotopy groups are applications of the suspension functor.

Algebraic K-theory

Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.

In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...

Phase synchronizations in models of coupled oscillators such as the Kuramoto model have been widely studied with pairwise couplings on arbitrary topologies, showing many unexpected dynamical behaviors. Here, based on a recent formulation the Kuramoto model ...

Kathryn Hess Bellwald, Inbar Klang

Shadows for bicategories, defined by Ponto, provide a useful framework that generalizes classical and topological Hochschild homology. In this paper, we define Hochschild-type invariants for monoids in a symmetric monoidal, simplicial model category V, as ...