Publication

Interferences in adiabatic transition probabilities mediated by Stockes lines

Charles Pfister
1991
Journal paper
Abstract

We consider the transition probability for two-level quantum-mechanical systems in the adiabatic limit when the Hamiltonian is analytic. We give a general formula for the leading term of the transition probability when it is governed by N complex eigenvalue crossings. This leading term is equal to a decreasing exponential times an oscillating function of the adiabaticity parameter. The oscillating function comes from an interference phenomenon between the contributions from each complex eigenvalue crossing, and when N=1, it reduces to the geometric prefactor recently studied.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.