The adiabatic theorem is a concept in quantum mechanics. Its original form, due to Max Born and Vladimir Fock (1928), was stated as follows:
A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.
In simpler terms, a quantum mechanical system subjected to gradually changing external conditions adapts its functional form, but when subjected to rapidly varying conditions there is insufficient time for the functional form to adapt, so the spatial probability density remains unchanged.
At some initial time a quantum-mechanical system has an energy given by the Hamiltonian ; the system is in an eigenstate of labelled . Changing conditions modify the Hamiltonian in a continuous manner, resulting in a final Hamiltonian at some later time . The system will evolve according to the time-dependent Schrödinger equation, to reach a final state . The adiabatic theorem states that the modification to the system depends critically on the time during which the modification takes place.
For a truly adiabatic process we require ; in this case the final state will be an eigenstate of the final Hamiltonian , with a modified configuration:
The degree to which a given change approximates an adiabatic process depends on both the energy separation between and adjacent states, and the ratio of the interval to the characteristic time-scale of the evolution of for a time-independent Hamiltonian, , where is the energy of .
Conversely, in the limit we have infinitely rapid, or diabatic passage; the configuration of the state remains unchanged:
The so-called "gap condition" included in Born and Fock's original definition given above refers to a requirement that the spectrum of is discrete and nondegenerate, such that there is no ambiguity in the ordering of the states (one can easily establish which eigenstate of corresponds to ). In 1999 J. E. Avron and A. Elgart reformulated the adiabatic theorem to adapt it to situations without a gap.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course covers several exact, approximate, and numerical methods to solve the time-dependent molecular Schrödinger equation, and applications including calculations of molecular electronic spectra.
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
In classical and quantum mechanics, geometric phase is a phase difference acquired over the course of a cycle, when a system is subjected to cyclic adiabatic processes, which results from the geometrical properties of the parameter space of the Hamiltonian. The phenomenon was independently discovered by S. Pancharatnam (1956), in classical optics and by H. C. Longuet-Higgins (1958) in molecular physics; it was generalized by Michael Berry in (1984). It is also known as the Pancharatnam–Berry phase, Pancharatnam phase, or Berry phase.
In thermodynamics, an adiabatic process (Greek: adiábatos, "impassable") is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work. As a key concept in thermodynamics, the adiabatic process supports the theory that explains the first law of thermodynamics. Some chemical and physical processes occur too rapidly for energy to enter or leave the system as heat, allowing a convenient "adiabatic approximation".
In this work, linear and nonlinear collisionless electrostatic simulation studies of the standard and short wavelength ion temperature gradient mode (SWITG) for experimental profiles and parameters of ADITYA-U tokamak are performed using the linear global ...
IOP Publishing Ltd2023
, ,
The first part of this article attempts to highlight in chronological order some prominent papers that have direct connexion with the Born-Oppenheimer approximation. This timeline successively points to the role of level crossing, the notions of gauge fiel ...
WILEY-V C H VERLAG GMBH2022
,
First-principles calculations of phonons are often based on the adiabatic approximation and on Brillouinzone samplings that might not always be sufficient to capture the subtleties of Kohn anomalies. These shortcomings can be addressed through corrections ...