Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
A novel thermoplastic composite preforming and moulding process is investigated to target cost issues in textile composite processing associated with trim waste, and the limited mechanical properties of current bulk flow- moulding composites. The thermoplastic programmable powdered preforming process (TP-P4) uses commingled glass and polypropylene yarns, which are cut to length before air assisted deposition onto a vacuum screen, enabling local preform areal weight tailoring. The as-placed fibres are heat- set for improved handling before an optional preconsolidation stage. The preforms are then preheated and press formed to obtain the final part. The process stages are examined to optimize part quality and throughput versus processing parameters. A viable processing route is proposed with typical cycle times below 40 s (for a plate 0.5 × 0.5 m2, weighing 2 kg), enabling high production capacity from one line. The mechanical performance is shown to surpass that of 40 wt.% GMT and has properties equivalent to those of 40 wt.% GMTex at both 20°C and 80°C.
, ,
Véronique Michaud, Jacobus Gerardus Rudolph Staal, Baris Çaglar, Helena Luisa Teixido Pedarros