Textile manufacturing (or textile engineering) is a major industry. It is largely based on the conversion of fibre into yarn, then yarn into fabric. These are then dyed or printed, fabricated into cloth which is then converted into useful goods such as clothing, household items, upholstery and various industrial products.
Different types of fibres are used to produce yarn. Cotton remains the most widely used and common natural fiber making up 90% of all-natural fibers used in the textile industry. People often use cotton clothing and accessories because of comfort, not limited to different weathers. There are many variable processes available at the spinning and fabric-forming stages coupled with the complexities of the finishing and colouration processes to the production of a wide range of products.
Textile manufacturing by pre-industrial methods and Textile manufacture during the British Industrial RevolutionTextile manufacturing in the modern era is an evolved form of the art and craft industries. Until the 18th and 19th centuries, the textile industry was a household work. It became mechanised in the 18th and 19th centuries, and has continued to develop through science and technology in the twentieth and twenty-first centuries.
Cotton is the world's most important natural fibre. In the year 2007, the global yield was 25 million tons from 35 million hectares cultivated in more than 50 countries.
There are six stages to the manufacturing of cotton textiles:
Cultivating and Harvesting
Preparatory Processes
Spinning
Weaving or Knitting
Finishing
Marketing
Cotton is grown in locations with long, hot, dry summers with plenty of sunshine and low humidity. Indian cotton, Gossypium arboreum, is finer but the staple is only suitable for hand processing. American cotton, Gossypium hirsutum, produces the longer staple needed for mechanised textile production. The planting season is from September to mid-November, and the crop is harvested between March and June.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The latest developments in processing and the novel generations of organic composites are discussed. Nanocomposites, adaptive composites and biocomposites are presented. Product development, cost anal
Les enjeux environnementaux doivent être abordés de façon systémique. L'Analyse du Cycle de Vie (ACV) et l'Analyse de Flux de Matière (AFM) sont des méthodes permettant d'évaluer de façon globale les
This is a collection of lectures on "structured innovation systems," codified approaches to stimulating and managing the process of innovation. Some of the systems to be covered may be Design Thinking
Dyeing is the application of dyes or pigments on textile materials such as fibers, yarns, and fabrics with the goal of achieving color with desired color fastness. Dyeing is normally done in a special solution containing dyes and particular chemical material. Dye molecules are fixed to the fiber by absorption, diffusion, or bonding with temperature and time being key controlling factors. The bond between dye molecule and fiber may be strong or weak, depending on the dye used.
Worsted (ˈwɜːrstᵻd or ˈwʊstᵻd) is a high-quality type of wool yarn, the fabric made from this yarn, and a yarn weight category. The name derives from Worstead, a village in the English county of Norfolk. That village, together with North Walsham and Aylsham, formed a manufacturing centre for yarn and cloth in the 12th century, when pasture enclosure and liming rendered the East Anglian soil too rich for the older agrarian sheep breeds. In the same period, many weavers from the County of Flanders moved to Norfolk.
Desizing is the process of removing the size material from warp yarns after a textile fabric is woven. Sizing agents are selected on the basis of type of fabric, environmental friendliness, ease of removal, cost considerations, effluent treatment, etc.
Magnetically responsive soft materials are promising building blocks for the next generation of soft robotics, prosthesis, surgical tools, and smart textiles. To date, however, the fabrication of highly integrated magnetic fibers with extreme aspect ratios ...
A new model is proposed for the consolidation of hybrid textiles, in which air entrapment and dissolution are considered. One of the key parameters is tow permeability, which is described by the analytical model of Gebart and validated at very high fibre v ...
Side-by-side hybrid textiles are an intermediate step for the production of fibre-reinforcedthermoplastic composites. Press moulding these materials combining reinforcing fibre textiles andthermoplastic matrix textiles or flexible layers is a promising met ...