Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Real-world phenomena involve complex interactions between multiple signal modalities. As a consequence, humans are used to integrate at each instant perceptions from all their senses in order to enrich their understanding of the surrounding world. This par ...
We present a model for the self-organized formation of place cells, head-direction cells, and spatial-view cells in the hippocampal formation based on unsupervised learning on quasi-natural visual stimuli. The model comprises a hierarchy of Slow Feature An ...
Approximating a signal or an image with a sparse linear expansion from an overcomplete dictionary of atoms is an extremely useful tool to solve many signal processing problems. Finding the sparsest approximation of a signal from an arbitrary dictionary is ...
Typical tasks in signal processing may be done in simpler ways or more efficiently if the signals to analyze are represented in a proper way. This thesis deals with some algorithmic problems related to signal approximation, more precisely, in the novel fie ...
In this paper, we propose the use of (adaptive) nonlinear approximation for dimensionality reduction. In particular, we propose a dimensionality reduction method for learning a parts based representation of signals using redundant dictionaries. A redundant ...
Numerous applications demand that we manipulate large sets of very high-dimensional signals. A simple yet common example is the problem of finding those signals in a database that are closest to a query. In this paper, we tackle this problem by restricting ...
This paper shows introduces the use sensing dictionaries for p-thresholding, an algorithm to compute simultaneous sparse approximations of multichannel signals over redundant dictionaries. We do both a worst case and average case recovery analyses of this ...
Recent results in compressed sensing or compressive sampling suggest that a relatively small set of measurements taken as the inner product with universal random measurement vectors can well represent a source that is sparse in some fixed basis. By adaptin ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2007
In this article is shown that with high probability the thresholding algorithm can recover signals that are sparse in a redundant dictionary as long as the {\it 2-Babel function} is growing slowly. This implies that it can succeed for sparsity levels up to ...
There has been an intense activity recently in the field of sparse approximations with redundant dictionaries, largely motivated by the practical performances of algorithms such as Matching Pursuit and Basis Pursuit. However, most of the theoretical result ...